Suppr超能文献

一项利用监测、流行病学和最终结果(SEER)数据库进行的回顾性研究,以预测宫颈癌肺转移的风险和预后因素:列线图的构建与验证。

A retrospective study using the Surveillance Epidemiology and End Results (SEER) database to predict risk and prognostic factors for lung metastasis in cervical carcinoma: nomogram development and validation.

作者信息

Jin Hao, Wang Hairong, Guo Junting, Gong Nan, Jin Zhengchao

机构信息

Clinical Research Management Department, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.

Scientific Research and Education Department, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.

出版信息

Transl Cancer Res. 2025 Jun 30;14(6):3670-3689. doi: 10.21037/tcr-2025-221. Epub 2025 Jun 26.

Abstract

BACKGROUND

Lung metastasis is commonly observed in patients with cervical carcinoma and is frequently linked to a poor prognosis. Currently, there is a gap in research specifically addressing the diagnostic and prognostic assessment of lung metastasis in cervical carcinoma patients through the use of nomograms. Therefore, developing effective predictive models is crucial for guiding clinical practice and improving patient management. The objective of this study is to develop and validate nomogram-based models for predicting lung metastasis and prognosis in patients with cervical carcinoma.

METHODS

We selected patients from the Surveillance, Epidemiology, and End Results (SEER) database, covering the period from 2000 to 2021. In order to find independent risk factors for lung metastasis in cervical carcinoma patients, we used both univariate and multivariate logistic regression analyses. We also performed univariate and multivariate Cox proportional hazards regression analyses to determine independent prognostic factors for cervical cancer patients with lung metastasis. From these analyses, we constructed two innovative nomograms. We evaluated their performance using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).

RESULTS

A total of 12,632 cervical carcinoma patients were included in the study, with 379 patients diagnosed with lung metastasis at the time of their initial diagnosis. Age, marital status, histology, grade, primary site, T stage, N stage, surgery, chemotherapy, liver metastasis, and bone metastasis were identified as independent risk factors for lung metastasis in patients with cervical carcinoma. Also, the lack of chemotherapy and radiotherapy, combined with liver metastasis, were recognized as independent prognostic factors affecting the outcomes of patients with cervical carcinoma and lung metastasis. The predictive performance of the two nomograms for lung metastasis and prognosis in cervical carcinoma patients was verified using ROC curves, calibration, DCA curves, and Kaplan-Meier survival curves in both the training and validation groups.

CONCLUSIONS

The two nomograms accurately predict lung metastasis in cervical carcinoma patients and forecast outcomes for those with lung metastases. Therefore, they are significant tools for enhancing personalized clinical decision-making in future practices.

摘要

背景

宫颈癌患者中常见肺转移,且常与预后不良相关。目前,在通过使用列线图专门针对宫颈癌患者肺转移的诊断和预后评估方面存在研究空白。因此,开发有效的预测模型对于指导临床实践和改善患者管理至关重要。本研究的目的是开发并验证基于列线图的模型,用于预测宫颈癌患者的肺转移和预后。

方法

我们从监测、流行病学和最终结果(SEER)数据库中选取了2000年至2021年期间的患者。为了找出宫颈癌患者肺转移的独立危险因素,我们使用了单变量和多变量逻辑回归分析。我们还进行了单变量和多变量Cox比例风险回归分析,以确定宫颈癌肺转移患者的独立预后因素。通过这些分析,我们构建了两个创新的列线图。我们使用受试者操作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)来评估它们的性能。

结果

本研究共纳入12632例宫颈癌患者,其中379例在初次诊断时被诊断为肺转移。年龄、婚姻状况、组织学类型、分级、原发部位、T分期、N分期、手术、化疗、肝转移和骨转移被确定为宫颈癌患者肺转移的独立危险因素。此外,未进行化疗和放疗以及合并肝转移被认为是影响宫颈癌肺转移患者预后的独立预后因素。在训练组和验证组中,使用ROC曲线、校准、DCA曲线和Kaplan-Meier生存曲线验证了这两个列线图对宫颈癌患者肺转移和预后的预测性能。

结论

这两个列线图能够准确预测宫颈癌患者的肺转移,并预测肺转移患者的预后。因此,它们是未来实践中加强个性化临床决策的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edfa/12268780/8b8b5f4cdcc0/tcr-14-06-3670-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验