Suppr超能文献

列线图预测胰腺癌骨转移的风险和预后因素:基于人群的分析。

Nomogram Predicts Risk and Prognostic Factors for Bone Metastasis of Pancreatic Cancer: A Population-Based Analysis.

机构信息

Department of Orthopedics, Zhejiang Provincial People's Hospital, Qingdao University, Qingdao, China.

Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China.

出版信息

Front Endocrinol (Lausanne). 2022 Mar 9;12:752176. doi: 10.3389/fendo.2021.752176. eCollection 2021.

Abstract

BACKGROUND

The overall survival (OS) of pancreatic cancer (PC) patients with bone metastasis (BM) is extremely low, and it is pretty hard to treat bone metastasis. However, there are currently no effective nomograms to predict the diagnosis and prognosis of pancreatic cancer with bone metastasis (PCBM). Therefore, it is of great significance to establish effective predictive models to guide clinical practice.

METHODS

We screened patients from Surveillance Epidemiology and End Results (SEER) database between 2010 and 2016. The independent risk factors of PCBM were identified from univariable and multivariable logistic regression analyses, and univariate and multivariate Cox proportional hazards regression analyses were used to determine independent prognostic factors affecting the prognosis of PCBM. In addition, two nomograms were constructed to predict the risk and prognosis of PCBM. We used the area under the curve (AUC), C-index and calibration curve to determine the predictive accuracy and discriminability of nomograms. The decision curve analysis (DCA) and Kaplan-Meier(K-M) survival curves were employed to further confirm the clinical effectiveness of the nomogram.

RESULTS

Multivariable logistic regression analyses revealed that risk factors of PCBM included age, primary site, histological subtype, N stage, radiotherapy, surgery, brain metastasis, lung metastasis, and liver metastasis. Using Cox regression analyses, we found that independent prognostic factors of PCBM were age, race, grade, histological subtype, surgery, chemotherapy, and lung metastasis. We utilized nomograms to visually express data analysis results. The C-index of training cohort was 0.795 (95%CI: 0.758-0.832), whereas that of internal validation cohort was 0.800 (95%CI: 0.739-0.862), and the external validation cohort was 0.787 (95%CI: 0.746-0.828). Based on AUC of receiver operating characteristic (ROC) analysis, calibration plots, and decision curve analysis (DCA), we concluded that the risk and prognosis model of PCBM exhibits excellent performance.

CONCLUSION

Nomogram is sufficiently accurate to predict the risk and prognostic factors of PCBM, allowing for individualized clinical decisions for future clinical work.

摘要

背景

胰腺癌(PC)伴骨转移(BM)患者的总体生存率(OS)极低,且骨转移的治疗难度较大。然而,目前尚无有效的列线图来预测胰腺癌伴骨转移(PCBM)的诊断和预后。因此,建立有效的预测模型来指导临床实践具有重要意义。

方法

我们从 2010 年至 2016 年期间从监测、流行病学和最终结果(SEER)数据库中筛选患者。单变量和多变量逻辑回归分析确定 PCBM 的独立危险因素,单变量和多变量 Cox 比例风险回归分析确定影响 PCBM 预后的独立预后因素。此外,构建了两个列线图来预测 PCBM 的风险和预后。我们使用曲线下面积(AUC)、C 指数和校准曲线来确定列线图的预测准确性和区分度。决策曲线分析(DCA)和 Kaplan-Meier(K-M)生存曲线进一步证实了列线图的临床有效性。

结果

多变量逻辑回归分析显示,PCBM 的危险因素包括年龄、原发部位、组织学亚型、N 分期、放疗、手术、脑转移、肺转移和肝转移。使用 Cox 回归分析,我们发现 PCBM 的独立预后因素包括年龄、种族、分级、组织学亚型、手术、化疗和肺转移。我们利用列线图直观地表达数据分析结果。训练队列的 C 指数为 0.795(95%CI:0.758-0.832),内部验证队列为 0.800(95%CI:0.739-0.862),外部验证队列为 0.787(95%CI:0.746-0.828)。基于受试者工作特征(ROC)分析的 AUC、校准图和决策曲线分析(DCA),我们得出结论,PCBM 的风险和预后模型具有良好的性能。

结论

列线图足以准确预测 PCBM 的风险和预后因素,为未来的临床工作提供个体化的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb3c/8959409/49f131371612/fendo-12-752176-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验