Suppr超能文献

差异分布:一种通过根据相关ICD-10编码纳入患者健康状况来间接估计参考区间的改进方法。

Differential Distributions: A refined methodology to indirect reference interval estimation by including Patient's health status according to associated ICD-10 codes.

作者信息

Schär David, Blatter Tobias U, Witte Harald, Stoyanov Jivko, Hersberger Martin, Nakas Christos T, Leichtle Alexander B

机构信息

University Institute of Clinical Chemistry Inselspital - Bern University Hospital and University of Bern, Switzerland.

Graduate School for Health Sciences (GHS) University of Bern, Switzerland.

出版信息

Pract Lab Med. 2025 Jul 9;46:e00492. doi: 10.1016/j.plabm.2025.e00492. eCollection 2025 Sep.

Abstract

BACKGROUND

Traditional methods for estimating reference intervals (RIs) using patient's blood test results from the clinical routine, typically remove outliers without considering the nuanced health statuses of patients. This removes a vast majority of test results for reference interval estimation without considering the actual health status of the patient.

METHODS

We introduce the Differential Distribution Method (DDM) which uses laboratory routine data coded with ICD-10 to approximate an underlying non-diseased age and sex stratified population from mixed clinical data. By removing test results that stem from subpopulations significantly different from the general population, reference intervals can be generated stratified by sex and age, taking into account the associated health conditions of the patients as derived by the ICD-10 coding system.

RESULTS

Applying the DDM to blood plasma potassium levels demonstrated its ability to adjust RIs dynamically across different patient groups. The method effectively differentiated RIs in a decade-based stratification, showing significant variability and tighter confidence intervals, particularly in older (above 60 years old) adults. The RIs were slightly wider with advancing age in both males and females, while their standard deviation was reduced by removing large portions of test results differing significantly, grouped by either their individual ICD-10 code or clusters of ICD-10 codes.

CONCLUSIONS

This DDM data mining approach offers a robust framework for RI inference by generating adjusted RIs that incorporate clinical nuances reflected in ICD-10 codes. This approach not only enhances the accuracy of patient diagnostics but also facilitates the identification of potential multimorbidities affecting laboratory results.

摘要

背景

传统方法利用临床常规中患者的血液检测结果来估计参考区间(RI),通常会去除异常值,而不考虑患者细微的健康状况。这在不考虑患者实际健康状况的情况下,去除了绝大多数用于参考区间估计的检测结果。

方法

我们引入了差异分布法(DDM),该方法使用用国际疾病分类第十版(ICD - 10)编码的实验室常规数据,从混合临床数据中近似得出潜在的非患病年龄和性别分层人群。通过去除来自与一般人群显著不同的亚人群的检测结果,可以按性别和年龄分层生成参考区间,同时考虑到ICD - 10编码系统所推导的患者相关健康状况。

结果

将DDM应用于血浆钾水平,证明了其在不同患者群体中动态调整RI的能力。该方法在基于十年的分层中有效地区分了RI,显示出显著的变异性和更窄的置信区间,特别是在老年人(60岁以上)中。男性和女性的RI均随着年龄增长略有变宽,而通过去除按其个体ICD - 10编码或ICD - 10编码簇显著不同的大部分检测结果,其标准差降低。

结论

这种DDM数据挖掘方法通过生成纳入ICD - 10编码中反映的临床细微差别的调整后RI,为RI推断提供了一个强大的框架。这种方法不仅提高了患者诊断的准确性,还有助于识别影响实验室结果的潜在多种疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca4b/12275890/204c940e721e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验