Reyes-Gopar Helena, Pérez-Fuentes Keila Adonai, Bendall Matthew L, Hernández-Lemus Enrique
Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Feinstein Institutes for Medical Research, Northwell Health, Institute of Translational Research, Manhasset, NY, United States.
Front Cell Dev Biol. 2025 Jul 4;13:1597245. doi: 10.3389/fcell.2025.1597245. eCollection 2025.
Triple-negative breast cancer (TNBC) accounts for twelve percent of all breast cancer cases, with a survival rate around ten percent lower than ER+/PR+ positive breast cancers. There are limited therapeutic options as these tumors do not respond to hormonal therapy or HER2-targeted treatments. We hypothesized that new insights into pathogenic mechanisms in TNBC can be obtained from studying epigenetic alterations through Hi-C (genome-wide chromosome conformation capture) data analysis.
We developed a computational strategy that captured key properties of chromatin conformation while incorporating statistical measures of interaction significance. This model addresses limitations in Hi-C data analysis without relying on predefined features like TADs and compartments. We applied this model to Hi-C and RNA-seq data from TNBC patients, representing the data as multilayer networks to identify genome-wide properties of the TNBC 3D genome.
Our network-based analysis revealed distinct chromatin interaction patterns in TNBC compared to healthy contralateral controls. Hi-C data can distinguish interaction patterns related to diseased phenotypes or interaction patterns with potential to exert regulatory effects instead of incidental contacts, but some apparently random interactions may also support important genome regulatory activities.
Our findings demonstrate that network-based Hi-C analysis can capture the genome-wide complexity of chromatin interactions in TNBC. This integrative approach provides new insights into the epigenetic mechanisms underlying TNBC pathogenesis and contributes to the advancement of analysis methods for future investigations into novel therapeutic targets.
三阴性乳腺癌(TNBC)占所有乳腺癌病例的12%,其生存率比雌激素受体阳性/孕激素受体阳性(ER+/PR+)乳腺癌低约10%。由于这些肿瘤对激素治疗或HER2靶向治疗无反应,治疗选择有限。我们假设通过Hi-C(全基因组染色体构象捕获)数据分析研究表观遗传改变,可以获得TNBC致病机制的新见解。
我们开发了一种计算策略,该策略在纳入相互作用显著性统计量度的同时,捕捉染色质构象的关键特性。该模型解决了Hi-C数据分析中的局限性,而不依赖于像拓扑相关结构域(TADs)和区室这样的预定义特征。我们将此模型应用于TNBC患者的Hi-C和RNA测序数据,将数据表示为多层网络,以识别TNBC三维基因组的全基因组特性。
我们基于网络的分析揭示了TNBC与健康对侧对照相比不同的染色质相互作用模式。Hi-C数据可以区分与疾病表型相关的相互作用模式或具有潜在调节作用而非偶然接触的相互作用模式,但一些明显随机的相互作用也可能支持重要的基因组调节活动。
我们的研究结果表明,基于网络的Hi-C分析可以捕捉TNBC中染色质相互作用的全基因组复杂性。这种综合方法为TNBC发病机制的表观遗传机制提供了新见解,并有助于推进分析方法,以便未来对新型治疗靶点进行研究。