Du Eric Y, Duong H T Kim, Tolentino M A Kristine, Houng Jacinta L, Suwannakot Panthipa, Tjandra Kristel C, Nguyen Duyen H T, Tilley Richard D, Justin Gooding J
School of Chemistry, The University of New South Wales, Sydney, NSW 2032 Australia.
Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2032 Australia.
Macromol Res. 2025;33(7):921-931. doi: 10.1007/s13233-025-00380-z. Epub 2025 Feb 19.
The transition from two-dimensional to three-dimensional cell cultures has transformed the understanding of cell physiology and cell-matrix interactions. Extracellular matrix (ECM) mimics tend to fall into either the natural or synthetic categories. Naturally occurring ECM mimics, such as collagen and gelatin, have superior bioactive properties but typically lack tuneability. Conversely, synthetic ECM mimics are highly defined but even with modifications, can lack the bioactivity of natural proteins. Therefore, to take advantage of the potential of both natural and synthetic ECM mimics, a biohybrid ionically crosslinked gelatin hydrogel was synthesised. This was achieved by utilising free amine groups along the gelatin backbone as the basis for a reversible addition - fragmentation chain-transfer (RAFT) reaction. The resulting polymers had tuneable stiffness and enhanced solubility compared to gelatin. The biohybrid gel also showed good biocompatibility, with MCF-7 cells forming larger spheroids when encapsulated within the biohybrid gel when compared to an unfunctionalized polyethylene-glycol (PEG) gel. Furthermore, due to the ionic crosslinking in the biohybrid gel, spheroids can be retrieved by digesting the matrix using 10 × phosphate-buffered saline (PBS). Retrieved cells were shown to be viable which allows for the potential of downstream analysis. Thus, this study highlights the potential of hybrid gelatin-PEG hydrogels for 3D cell culture.
The biohybrid gelatin (Gelatin-SPMA) is crosslinked with a positively charged polymer (PEG-MAETMA) to form a gel within seconds. MCF-7 cells survived encapsulation and formed spheroids over 7 days. 10x phosphate buffered saline (PBS) was then used to digest the hydrogel, allowing for the recovery of encapsulated spheroids.
The online version contains supplementary material available at 10.1007/s13233-025-00380-z.
从二维细胞培养向三维细胞培养的转变改变了我们对细胞生理学和细胞与基质相互作用的理解。细胞外基质(ECM)模拟物往往分为天然或合成两类。天然存在的ECM模拟物,如胶原蛋白和明胶,具有优异的生物活性特性,但通常缺乏可调节性。相反,合成ECM模拟物具有高度的确定性,但即使经过修饰,也可能缺乏天然蛋白质的生物活性。因此,为了利用天然和合成ECM模拟物的潜力,合成了一种生物杂交离子交联明胶水凝胶。这是通过利用明胶主链上的游离胺基作为可逆加成-断裂链转移(RAFT)反应的基础来实现的。与明胶相比,所得聚合物具有可调节的刚度和增强的溶解性。这种生物杂交凝胶还表现出良好的生物相容性,与未功能化的聚乙二醇(PEG)凝胶相比,MCF-7细胞在封装于生物杂交凝胶中时形成更大的球体。此外,由于生物杂交凝胶中的离子交联,可以通过使用10×磷酸盐缓冲盐水(PBS)消化基质来回收球体。回收的细胞显示出活力,这为下游分析提供了可能性。因此,本研究突出了明胶-PEG混合水凝胶在三维细胞培养中的潜力。
生物杂交明胶(Gelatin-SPMA)与带正电荷的聚合物(PEG-MAETMA)交联,在几秒钟内形成凝胶。MCF-7细胞在封装后存活,并在7天内形成球体。然后使用10倍磷酸盐缓冲盐水(PBS)消化水凝胶,从而回收封装的球体。
在线版本包含可在10.1007/s13233-025-00380-z获取的补充材料。