Chittajallu R, Vlachos A, Caccavano A P, Yuan X Q, Hunt S, Abebe D, London E, Pelkey K A, McBain C J
Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA.
bioRxiv. 2025 Aug 15:2024.12.10.627344. doi: 10.1101/2024.12.10.627344.
The medial habenula (mHb)/interpeduncular nucleus (IPN) circuitry is resident to divergent molecular, neurochemical and cellular components which, in concert, perform computations to drive emotion, reward and addiction behaviors. Although housing one of the most prominent mu opioid receptor (mOR) expression levels in the brain, remarkably little is known as to how they impact mHb/IPN circuit function at the granular level. In this study, our systematic functional and pharmacogenetic analyses demonstrate that mOR activation attenuates glutamatergic signaling whilst producing an opposing potentiation of glutamatergic/cholinergic co-transmission mediated by mHb substance P and cholinergic neurons, respectively. Intriguingly, this latter non-canonical augmentation is developmentally regulated only emerging during later postnatal stages. In addition, we reveal that specific potassium channels act as a molecular brake on nicotinic receptor signaling in the IPN with the opioid mediated potentiation of this arm of neurotransmission being operational only following attenuation of Kv1 function. Thus, mORs play a complex role in shaping the salience of distinct afferent inputs and transmitter modalities that ultimately influences synaptic recruitment of downstream GABAergic IPN neurons. Together, these observations provide a framework for future investigations aimed at identifying the neural underpinnings of maladaptive behaviors that can emerge when opioids, including potent synthetic analogs such as fentanyl, modulate or hijack this circuitry during the vulnerable stages of adolescence and in adulthood.
内侧缰核(mHb)/脚间核(IPN)神经回路包含不同的分子、神经化学和细胞成分,这些成分协同进行运算,以驱动情绪、奖赏和成瘾行为。尽管大脑中内侧缰核的μ阿片受体(mOR)表达水平最为显著,但对于它们如何在颗粒水平上影响mHb/IPN神经回路功能却知之甚少。在本研究中,我们的系统功能和药物遗传学分析表明,mOR激活会减弱谷氨酸能信号传导,同时分别对由mHbP物质和胆碱能神经元介导的谷氨酸能/胆碱能共传递产生相反的增强作用。有趣的是,后一种非经典增强作用仅在出生后后期才出现,且受到发育调控。此外,我们发现特定的钾通道对IPN中的烟碱受体信号传导起到分子制动作用,只有在Kv1功能减弱后,阿片类药物介导的该神经传递分支的增强作用才会起作用。因此,mOR在塑造不同传入输入和递质模式的显著性方面发挥着复杂作用,最终影响下游GABA能IPN神经元的突触募集。这些观察结果共同为未来的研究提供了一个框架,旨在确定在青少年和成年期的脆弱阶段,当阿片类药物(包括强效合成类似物芬太尼)调节或劫持该神经回路时可能出现的适应不良行为的神经基础。