Mukuhlani Blessed T
College of Medicine, University of Zimbabwe, Harare, ZWE.
Cureus. 2025 Jun 18;17(6):e86326. doi: 10.7759/cureus.86326. eCollection 2025 Jun.
Human immunodeficiency virus (HIV) integrase inhibitors play a critical role in antiretroviral therapy, but the emergence of drug resistance necessitates the discovery of novel compounds. Machine learning (ML) offers a data-driven approach to accelerate drug discovery by predicting potential inhibitors with high efficacy. This study utilized a curated dataset of known HIV integrase inhibitors and employed feature engineering techniques to extract molecular descriptors. Random forest and logistic regression models were trained to classify compounds based on their inhibitory potential. Model performance was evaluated using accuracy, precision, recall, and the area under the receiver operating characteristic curve (AUC-ROC). The random forest model demonstrated superior predictive performance, achieving an AUC-ROC of 0.886, an accuracy of 0.815, and a precision of 0.79. Key molecular features, including hydrogen bond donors, rotatable bonds, and molecular weight, were identified as crucial determinants of inhibition. The models successfully screened novel compounds with high predicted inhibitory potential. Machine learning (ML) provides a powerful tool for the rapid identification of potential HIV integrase inhibitors. This study highlights the importance of molecular descriptors in predicting inhibitory activity and demonstrates the feasibility of ML-driven drug discovery. Future work will focus on refining model generalization, expanding datasets, and developing a user-friendly platform via Streamlit to enhance accessibility for researchers and drug developers.
人类免疫缺陷病毒(HIV)整合酶抑制剂在抗逆转录病毒治疗中发挥着关键作用,但耐药性的出现使得发现新型化合物成为必要。机器学习(ML)提供了一种数据驱动的方法,通过预测高效的潜在抑制剂来加速药物发现。本研究利用了一个经过整理的已知HIV整合酶抑制剂数据集,并采用特征工程技术来提取分子描述符。训练了随机森林和逻辑回归模型,以根据化合物的抑制潜力对其进行分类。使用准确率、精确率、召回率和受试者工作特征曲线下面积(AUC-ROC)来评估模型性能。随机森林模型表现出卓越的预测性能,AUC-ROC为0.886,准确率为0.815,精确率为0.79。关键分子特征,包括氢键供体、可旋转键和分子量,被确定为抑制作用的关键决定因素。这些模型成功筛选出了具有高预测抑制潜力的新型化合物。机器学习(ML)为快速识别潜在的HIV整合酶抑制剂提供了一个强大的工具。本研究突出了分子描述符在预测抑制活性方面的重要性,并证明了ML驱动的药物发现的可行性。未来的工作将集中在改进模型泛化、扩展数据集以及通过Streamlit开发一个用户友好的平台,以提高研究人员和药物开发者的可及性。
Comput Methods Programs Biomed. 2025-6-21
Comput Assist Surg (Abingdon). 2024-12
SAR QSAR Environ Res. 2022-5
China CDC Wkly. 2021-11-26
Artif Intell Rev. 2022
Comput Math Methods Med. 2021-4-1
Curr HIV/AIDS Rep. 2020-2
Nat Rev Drug Discov. 2019-6
Retrovirology. 2017-6-5
Nat Rev Dis Primers. 2015-10-1