文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于识别新型HIV整合酶抑制剂的机器学习模型的开发与验证

Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors.

作者信息

Mukuhlani Blessed T

机构信息

College of Medicine, University of Zimbabwe, Harare, ZWE.

出版信息

Cureus. 2025 Jun 18;17(6):e86326. doi: 10.7759/cureus.86326. eCollection 2025 Jun.


DOI:10.7759/cureus.86326
PMID:40688956
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12274784/
Abstract

Human immunodeficiency virus (HIV) integrase inhibitors play a critical role in antiretroviral therapy, but the emergence of drug resistance necessitates the discovery of novel compounds. Machine learning (ML) offers a data-driven approach to accelerate drug discovery by predicting potential inhibitors with high efficacy. This study utilized a curated dataset of known HIV integrase inhibitors and employed feature engineering techniques to extract molecular descriptors. Random forest and logistic regression models were trained to classify compounds based on their inhibitory potential. Model performance was evaluated using accuracy, precision, recall, and the area under the receiver operating characteristic curve (AUC-ROC). The random forest model demonstrated superior predictive performance, achieving an AUC-ROC of 0.886, an accuracy of 0.815, and a precision of 0.79. Key molecular features, including hydrogen bond donors, rotatable bonds, and molecular weight, were identified as crucial determinants of inhibition. The models successfully screened novel compounds with high predicted inhibitory potential. Machine learning (ML) provides a powerful tool for the rapid identification of potential HIV integrase inhibitors. This study highlights the importance of molecular descriptors in predicting inhibitory activity and demonstrates the feasibility of ML-driven drug discovery. Future work will focus on refining model generalization, expanding datasets, and developing a user-friendly platform via Streamlit to enhance accessibility for researchers and drug developers.

摘要

人类免疫缺陷病毒(HIV)整合酶抑制剂在抗逆转录病毒治疗中发挥着关键作用,但耐药性的出现使得发现新型化合物成为必要。机器学习(ML)提供了一种数据驱动的方法,通过预测高效的潜在抑制剂来加速药物发现。本研究利用了一个经过整理的已知HIV整合酶抑制剂数据集,并采用特征工程技术来提取分子描述符。训练了随机森林和逻辑回归模型,以根据化合物的抑制潜力对其进行分类。使用准确率、精确率、召回率和受试者工作特征曲线下面积(AUC-ROC)来评估模型性能。随机森林模型表现出卓越的预测性能,AUC-ROC为0.886,准确率为0.815,精确率为0.79。关键分子特征,包括氢键供体、可旋转键和分子量,被确定为抑制作用的关键决定因素。这些模型成功筛选出了具有高预测抑制潜力的新型化合物。机器学习(ML)为快速识别潜在的HIV整合酶抑制剂提供了一个强大的工具。本研究突出了分子描述符在预测抑制活性方面的重要性,并证明了ML驱动的药物发现的可行性。未来的工作将集中在改进模型泛化、扩展数据集以及通过Streamlit开发一个用户友好的平台,以提高研究人员和药物开发者的可及性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccfb/12274784/b7c02f2dbb3b/cureus-0017-00000086326-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccfb/12274784/0fb015b9dac3/cureus-0017-00000086326-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccfb/12274784/b7c02f2dbb3b/cureus-0017-00000086326-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccfb/12274784/0fb015b9dac3/cureus-0017-00000086326-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccfb/12274784/b7c02f2dbb3b/cureus-0017-00000086326-i02.jpg

相似文献

[1]
Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors.

Cureus. 2025-6-18

[2]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[3]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[4]
The Application of Machine Learning Algorithms to Predict HIV Testing Using Evidence from the 2002-2017 South African Adult Population-Based Surveys: An HIV Testing Predictive Model.

Trop Med Infect Dis. 2025-6-14

[5]
Proposal for Using AI to Assess Clinical Data Integrity and Generate Metadata: Algorithm Development and Validation.

JMIR Med Inform. 2025-6-30

[6]
Development of an interpretable machine learning model for frailty risk prediction in older adult care institutions: a mixed-methods, cross-sectional study in China.

BMJ Open. 2025-7-5

[7]
Non-measured and DVH-based patient-specific QA framework for lung SBRT VMAT with machine learning integration.

Med Phys. 2025-7

[8]
Prediction of additional hospital days in patients undergoing cervical spine surgery with machine learning methods.

Comput Assist Surg (Abingdon). 2024-12

[9]
Development of a Machine Learning Algorithm-Based Predictive Model for Physical Activity Levels in Lung Cancer Survivors: A Cross-Sectional Study.

J Clin Nurs. 2025-7-8

[10]
Development and external validation of machine learning models for the early prediction of malnutrition in critically ill patients: a prospective observational study.

BMC Med Inform Decis Mak. 2025-7-3

本文引用的文献

[1]
Machine learning aided multiscale modelling of the HIV-1 infection in the presence of NRTI therapy.

PeerJ. 2023

[2]
Machine learning-based predictive models for identifying high active compounds against HIV-1 integrase.

SAR QSAR Environ Res. 2022-5

[3]
Research Progress in the Epidemiology of HIV/AIDS in China.

China CDC Wkly. 2021-11-26

[4]
Machine Learning in Drug Discovery: A Review.

Artif Intell Rev. 2022

[5]
Classification and Design of HIV-1 Integrase Inhibitors Based on Machine Learning.

Comput Math Methods Med. 2021-4-1

[6]
Epidemiology of HIV in the USA: epidemic burden, inequities, contexts, and responses.

Lancet. 2021-3-20

[7]
Recent Advances in the Development of Integrase Inhibitors for HIV Treatment.

Curr HIV/AIDS Rep. 2020-2

[8]
Applications of machine learning in drug discovery and development.

Nat Rev Drug Discov. 2019-6

[9]
HIV drug resistance against strand transfer integrase inhibitors.

Retrovirology. 2017-6-5

[10]
HIV infection.

Nat Rev Dis Primers. 2015-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索