Ferreira Maria João, Colombani Sarah, Bernardin Albin, Lacampagne Alain, Pasquié Jean-Luc, Costa Pedro F, Charlot Benoit, Meli Albano C
PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
Biofabics, Porto, Portugal.
Curr Res Pharmacol Drug Discov. 2025 Jul 3;9:100227. doi: 10.1016/j.crphar.2025.100227. eCollection 2025.
The neuro-cardiac junction is involved in many pathological conditions in humans, but no model currently allows translational studies to investigate its role. Animal models fail to accurately represent this interaction. This review explores the role of microfluidic technologies in advancing organ-on-chip systems that simulate neuro-cardiac interactions in a controlled environment. By offering precise control over cellular environments, microfluidic platforms significantly enhance the modeling of dynamic cardiac-neural cell interactions. These systems allow the development of more accurate and functional neuro-cardiac junctions, vital for investigating cardiovascular diseases and the neuronal impact in these pathologies. While traditional animal models and co-culture techniques have their merits, they are limited in replicating human-specific physiology. Recent innovations in microfluidics, in combination with human-induced pluripotent stem cell technology, provide more physiologically relevant models and address ethical concerns regarding animal use. This review emphasizes the potential of these advanced microfluidic models in improving disease modeling, drug screening, and therapeutic strategies, ultimately advancing personalized medicine.
神经-心脏交界处涉及人类的许多病理状况,但目前尚无模型可用于开展转化研究来探究其作用。动物模型无法准确呈现这种相互作用。本综述探讨了微流控技术在推进芯片器官系统方面的作用,该系统可在可控环境中模拟神经-心脏相互作用。通过对细胞环境进行精确控制,微流控平台显著增强了动态心脏-神经细胞相互作用的建模。这些系统能够构建更精确且功能更完善的神经-心脏交界处,这对于研究心血管疾病以及这些病症中的神经元影响至关重要。虽然传统动物模型和共培养技术有其优点,但在复制人类特异性生理学方面存在局限性。微流控技术的最新创新与人类诱导多能干细胞技术相结合,提供了更具生理学相关性的模型,并解决了有关动物使用的伦理问题。本综述强调了这些先进微流控模型在改善疾病建模、药物筛选和治疗策略方面的潜力,最终推动个性化医疗的发展。