Mateen Muhammad, Chen Guanrong, Guo Na, Chin Wee Shong
Advance Manufacturing and Material Center, National University of Singapore (Chongqing) Research Institute, Chongqing 400000, P. R. China.
School of Chemistry and Chemical Engineering, Chongqing University, 400000, P. R. China.
Nanoscale Horiz. 2025 Sep 22;10(10):2397-2410. doi: 10.1039/d5nh00265f.
Interfacial engineering between metal sulfides (MS) and graphitic carbon nitride (g-CN) offers a promising strategy to design semiconductors for the efficient degradation of persistent water pollutants. However, conventional multi-step methods used to prepare MS/g-CN heterostructures often result in weak interfacial interactions between the building blocks, thereby leading to inefficient charge separation and sub-optimal catalytic performance. To overcome this limitation, we present here a novel single-step strategy for the preparation of 1D BiS()/2D g-CN heterostructures, producing intimate interactions between the 1D and 2D architectures as evidenced by experimental and theoretical findings. Remarkably, these robust interfacial interactions establish a strong internal electric field (IEF), favoring spatial separation of high charge flux at the 1D/2D interface an S-scheme mechanism. Importantly, the lowered charge transfer barrier at the interface speeds up the activation kinetics of peroxymonosulfate (PMS) and O, to achieve a high tetracycline degradation efficiency of 98.5% with a rate constant of 0.06 min. DFT calculation results reveal that the effective coupling between the 1D/2D counterparts induced a charge redistribution and electron density accumulation at the interface, facilitating cleavage of the O-O bond in PMS and O. Furthermore, DFT calculations identified a unique PMS adsorption configuration on Bi sites and revealed the competence of S atoms in activating the peroxide bond in PMS. This work offers a cost-effective and environmentally friendly approach for the rational engineering of interfacial interactions in MS/g-CN heterostructures, enabling highly efficient applications in energy and environmental remediation.
金属硫化物(MS)与石墨相氮化碳(g-CN)之间的界面工程为设计用于高效降解持久性水污染物的半导体提供了一种很有前景的策略。然而,用于制备MS/g-CN异质结构的传统多步方法常常导致结构单元之间的界面相互作用较弱,从而导致电荷分离效率低下和催化性能欠佳。为克服这一限制,我们在此提出一种制备一维BiS₃/二维g-CN异质结构的新型单步策略,实验和理论研究结果均表明,该策略可使一维和二维结构之间产生紧密的相互作用。值得注意的是,这些强大的界面相互作用建立了一个强大的内电场(IEF),有利于在一维/二维界面处实现高电荷通量的空间分离——这是一种S型机制。重要的是,界面处降低的电荷转移势垒加快了过一硫酸盐(PMS)和O₂的活化动力学,实现了98.5%的高四环素降解效率,速率常数为0.06 min⁻¹。密度泛函理论(DFT)计算结果表明,一维/二维对应物之间的有效耦合在界面处引起了电荷重新分布和电子密度积累,促进了PMS和O₂中O-O键的断裂。此外,DFT计算确定了Bi位点上独特的PMS吸附构型,并揭示了S原子激活PMS中过氧化物键的能力。这项工作为合理设计MS/g-CN异质结构中的界面相互作用提供了一种经济高效且环境友好的方法,能够在能源和环境修复领域实现高效应用。