Takallu Sara, Karimi Zeinab, Khorshidi Hooman, Bazargani Abdollah, Bigham-Sadegh Amin, Torabi Nezhad Simin, Mirzaei Esmaeil
Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran.
Shiraz Nephro-urology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran.
ACS Biomater Sci Eng. 2025 Jul 21. doi: 10.1021/acsbiomaterials.5c00613.
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are pivotal surgical techniques for addressing periodontal defects arising from periodontitis. These methods utilize barrier membranes to isolate soft tissue from bone defects, preventing premature fibroblast infiltration and promoting osteoblast colonization. However, infections caused by periodontitis-associated pathogens significantly elevate the risk of membrane failure, underscoring the need for advanced membrane designs. This study introduces a multifunctional membrane, known as guided tissue/bone regeneration membrane (GTBRM), engineered to optimize composition, structure, and bioactivity. The GTBRM comprises two porous collagen layers for soft and hard tissue regeneration and 2% silver nanoparticles (AgNPs) and β-tricalcium phosphate nanoparticles (β-TCP NPs) for antibacterial and osteogenic properties, respectively, and a dense poly(vinyl alcohol) (PVA)/cellulose nanocrystal (CNC) core for mechanical strength and cell occlusion. Physicochemical properties of the membrane were characterized using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, tensile strength testing, and biodegradation assessments. In vitro studies with MG-63 cells, human gingival fibroblasts (HGF), and bone marrow mesenchymal stem cells (BMSCs) demonstrated biocompatibility, cell adhesion, proliferation, and osteogenic differentiation. The incorporation of AgNPs conferred significant antibacterial efficacy against () and (), and β-TCP NPs enhanced osteoblast activity. In vivo studies in rat radial bone and oral defect models revealed that GTBRM markedly improved osteogenesis and buccal soft tissue regeneration. These preclinical findings suggest that the GTBRM exhibits potential for periodontal regeneration by providing biocompatibility, space maintenance, antibacterial properties, and osteoconductivity. However, further studies are needed to validate its clinical efficacy and translational potential.
引导组织再生(GTR)和引导骨再生(GBR)是解决牙周炎引起的牙周缺损的关键外科技术。这些方法利用屏障膜将软组织与骨缺损隔离开来,防止成纤维细胞过早浸润,并促进成骨细胞定植。然而,由牙周炎相关病原体引起的感染显著增加了膜失败的风险,凸显了先进膜设计的必要性。本研究介绍了一种多功能膜,称为引导组织/骨再生膜(GTBRM),其设计旨在优化成分、结构和生物活性。GTBRM由两层用于软组织和硬组织再生的多孔胶原层、分别用于抗菌和成骨特性的2%银纳米颗粒(AgNPs)和β-磷酸三钙纳米颗粒(β-TCP NPs)以及用于机械强度和细胞封闭的致密聚乙烯醇(PVA)/纤维素纳米晶体(CNC)核心组成。使用扫描电子显微镜(SEM)、能量色散X射线分析(EDAX)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、拉伸强度测试和生物降解评估对膜的物理化学性质进行了表征。对MG-63细胞、人牙龈成纤维细胞(HGF)和骨髓间充质干细胞(BMSCs)的体外研究证明了其生物相容性、细胞粘附、增殖和成骨分化。AgNPs的掺入赋予了对()和()的显著抗菌功效,β-TCP NPs增强了成骨细胞活性。在大鼠桡骨和口腔缺损模型中的体内研究表明,GTBRM显著改善了成骨和颊侧软组织再生。这些临床前研究结果表明,GTBRM通过提供生物相容性、空间维持、抗菌特性和骨传导性,展现出牙周再生的潜力。然而,需要进一步研究来验证其临床疗效和转化潜力。