Suppr超能文献

提高国家早期预警评分2的预测准确性:算法优化方案

Improving the Predictive Accuracy of the National Early Warning Score 2: Protocol for Algorithm Refinement.

作者信息

Plummer Chris, Cong Cen, Milne-Ives Madison, Threlfall Lynsey, Roux Peta Le, Meinert Edward

机构信息

Department of Cardiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.

NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom.

出版信息

JMIR Res Protoc. 2025 Jul 21;14:e70303. doi: 10.2196/70303.

Abstract

BACKGROUND

The National Early Warning Score 2 (NEWS2) has been widely adopted for predicting patient deterioration in health care settings using routinely collected physiological observations. The use of NEWS2 has been shown to reduce in-hospital mortality, but it has limited accuracy in the prediction of clinically important outcomes, especially over longer time periods.

OBJECTIVE

This project aims to improve the predictive accuracy of the NEWS2 scoring system, particularly its accuracy over more than 24 hours and its predictive value in older patients and children. It will investigate whether using the currently collected data differently and the inclusion of additional data would result in an improved algorithm.

METHODS

The study will use historical patient data from the Newcastle upon Tyne Hospitals NHS Foundation Trust, including observational data (eg, vital signs), BMI- related data, and other outcome-related variables (eg, mortality rates) to train and test an algorithm to predict the risk of key clinical outcomes, including mortality, intensive therapy unit admission, sepsis, and cardiac arrest, to demonstrate a proof of concept for a modified scoring system. The algorithm's performance will be assessed based on its accuracy, precision, F-score, area under the curve, and receiver operating characteristic curve.

RESULTS

The study is expected to start in April 2025. The findings are expected to be produced by the end of 2026 and will be disseminated at symposia, conferences, and in journal publications.

CONCLUSIONS

The refined NEWS2 algorithm will address limited accuracy in predicting clinical deterioration beyond 24 hours in the original system by incorporating additional variables. Improved accuracy in the early detection of deterioration can lead to timely interventions, potentially reducing mortality and adverse clinical events. The enhanced algorithm also has the potential to be integrated into existing clinical decision support systems to facilitate health care professionals' decision-making.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/70303.

摘要

背景

国家早期预警评分2(NEWS2)已被广泛用于通过常规收集的生理观察指标来预测医疗环境中患者的病情恶化。使用NEWS2已被证明可降低住院死亡率,但在预测临床重要结局方面,其准确性有限,尤其是在较长时间段内。

目的

本项目旨在提高NEWS2评分系统的预测准确性,特别是其在超过24小时的时间段内的准确性以及在老年患者和儿童中的预测价值。它将研究以不同方式使用当前收集的数据以及纳入额外数据是否会产生改进的算法。

方法

该研究将使用泰恩河畔纽卡斯尔医院国民保健服务基金会信托的历史患者数据,包括观察数据(如生命体征)、与体重指数相关的数据以及其他与结局相关的变量(如死亡率),来训练和测试一种算法,以预测包括死亡、重症监护病房入院、败血症和心脏骤停在内的关键临床结局的风险,从而为改良评分系统提供概念验证。将根据算法的准确性、精确性、F值、曲线下面积和受试者工作特征曲线来评估其性能。

结果

该研究预计于2025年4月开始。预计研究结果将于2026年底得出,并将在研讨会、会议和期刊出版物上发布。

结论

经过改进的NEWS2算法将通过纳入额外变量来解决原始系统在预测超过24小时的临床恶化方面准确性有限的问题。提高早期恶化检测的准确性可导致及时干预,有可能降低死亡率和不良临床事件。增强后的算法还有潜力集成到现有的临床决策支持系统中,以促进医疗保健专业人员的决策。

国际注册报告识别码(IRRID):PRR1-10.2196/70303。

相似文献

4
Early Warning Scores With and Without Artificial Intelligence.早期预警评分与人工智能。
JAMA Netw Open. 2024 Oct 1;7(10):e2438986. doi: 10.1001/jamanetworkopen.2024.38986.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验