Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland.
Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.
BMJ. 2024 Sep 3;386:e078276. doi: 10.1136/bmj-2023-078276.
Predicting future outcomes of patients is essential to clinical practice, with many prediction models published each year. Empirical evidence suggests that published studies often have severe methodological limitations, which undermine their usefulness. This article presents a step-by-step guide to help researchers develop and evaluate a clinical prediction model. The guide covers best practices in defining the aim and users, selecting data sources, addressing missing data, exploring alternative modelling options, and assessing model performance. The steps are illustrated using an example from relapsing-remitting multiple sclerosis. Comprehensive R code is also provided.
预测患者的未来结局对于临床实践至关重要,每年都会有许多预测模型发表。实证证据表明,已发表的研究往往存在严重的方法学局限性,从而降低了其有用性。本文提供了一个逐步指南,帮助研究人员开发和评估临床预测模型。该指南涵盖了定义目标和用户、选择数据源、处理缺失数据、探索替代建模选项以及评估模型性能方面的最佳实践。这些步骤使用复发缓解型多发性硬化症的一个例子进行了说明。还提供了全面的 R 代码。