文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

合成医学数据评估记分卡。

Scorecard for synthetic medical data evaluation.

作者信息

Zamzmi Ghada, Subbaswamy Adarsh, Sizikova Elena, Margerrison Edward, Delfino Jana G, Badano Aldo

机构信息

Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration Silver Spring, Maryland, USA.

出版信息

Commun Eng. 2025 Jul 21;4(1):130. doi: 10.1038/s44172-025-00450-1.


DOI:10.1038/s44172-025-00450-1
PMID:40691520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12280076/
Abstract

Although the interest in synthetic medical data (SMD) for developing and testing artificial intelligence (AI) methods is growing, the absence of a comprehensive framework to evaluate the quality and applicability of SMD hinders its wider adoption. Here, we outline an evaluation framework designed to meet the unique requirements of medical applications. We also introduce SMD scorecard, a comprehensive report accompanying artificially generated datasets. This scorecard provides a quantitative assessment of SMD across seven criteria (7 Cs), complemented by a descriptive section that contains all relevant information about the dataset. The SMD scorecard provides a practical framework for evaluating and reporting the quality of synthetic data, which can benefit SMD developers and users.

摘要

尽管利用合成医学数据(SMD)来开发和测试人工智能(AI)方法的兴趣日益浓厚,但缺乏一个全面的框架来评估SMD的质量和适用性阻碍了其更广泛的应用。在此,我们概述了一个旨在满足医学应用独特要求的评估框架。我们还引入了SMD记分卡,这是一份随人工生成的数据集附带的综合报告。该记分卡通过包含有关数据集所有相关信息的描述性部分,对SMD的七个标准(7C)进行定量评估。SMD记分卡为评估和报告合成数据的质量提供了一个实用框架,这对SMD开发者和用户都有益处。

相似文献

[1]
Scorecard for synthetic medical data evaluation.

Commun Eng. 2025-7-21

[2]
A comprehensive Dynamic Balanced Scorecard approach for the Blue Economy.

J Environ Manage. 2025-9

[3]
Machine learning ensemble meets clinical practice: developing a real-world risk prediction model for metabolic syndrome using super learner and scorecard approaches.

J Adv Res. 2025-6-27

[4]
Designing and evaluating a balanced scorecard for a health information management department in a Canadian urban non-teaching hospital.

Health Informatics J. 2016-6

[5]
Governing patient safety: lessons learned from a mixed methods evaluation of implementing a ward-level medication safety scorecard in two English NHS hospitals.

BMJ Qual Saf. 2014-2

[6]
Palliative Care Scorecard.

J Palliat Med. 2017-5

[7]
The CDC Worksite Health ScoreCard: A Tool to Advance Workplace Health Promotion Programs and Practices.

Prev Chronic Dis. 2022-6-23

[8]
Developing the High-Risk Drinking Scorecard Model in Korea.

Osong Public Health Res Perspect. 2018-10

[9]
Monitoring health as an opportunity to categorize preventative and early-treatment actions in a self-care journey: our experience with a Healthcare Magenta Scorecard.

Mhealth. 2023-4-24

[10]
The Stockman's Scorecard: quantitative evaluation of beef cattle stockmanship.

Transl Anim Sci. 2020-9-21

本文引用的文献

[1]
AI models collapse when trained on recursively generated data.

Nature. 2024-7

[2]
Assessing the Capacity of a Denoising Diffusion Probabilistic Model to Reproduce Spatial Context.

IEEE Trans Med Imaging. 2024-10

[3]
A Critical Assessment of Generative Models for Synthetic Data Augmentation on Limited Pneumonia X-ray Data.

Bioengineering (Basel). 2023-12-14

[4]
Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation.

NPJ Digit Med. 2021-9-24

[5]
Artificial Intelligence Transforms the Future of Health Care.

Am J Med. 2019-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索