Zamzmi Ghada, Subbaswamy Adarsh, Sizikova Elena, Margerrison Edward, Delfino Jana G, Badano Aldo
Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration Silver Spring, Maryland, USA.
Commun Eng. 2025 Jul 21;4(1):130. doi: 10.1038/s44172-025-00450-1.
Although the interest in synthetic medical data (SMD) for developing and testing artificial intelligence (AI) methods is growing, the absence of a comprehensive framework to evaluate the quality and applicability of SMD hinders its wider adoption. Here, we outline an evaluation framework designed to meet the unique requirements of medical applications. We also introduce SMD scorecard, a comprehensive report accompanying artificially generated datasets. This scorecard provides a quantitative assessment of SMD across seven criteria (7 Cs), complemented by a descriptive section that contains all relevant information about the dataset. The SMD scorecard provides a practical framework for evaluating and reporting the quality of synthetic data, which can benefit SMD developers and users.
尽管利用合成医学数据(SMD)来开发和测试人工智能(AI)方法的兴趣日益浓厚,但缺乏一个全面的框架来评估SMD的质量和适用性阻碍了其更广泛的应用。在此,我们概述了一个旨在满足医学应用独特要求的评估框架。我们还引入了SMD记分卡,这是一份随人工生成的数据集附带的综合报告。该记分卡通过包含有关数据集所有相关信息的描述性部分,对SMD的七个标准(7C)进行定量评估。SMD记分卡为评估和报告合成数据的质量提供了一个实用框架,这对SMD开发者和用户都有益处。
Commun Eng. 2025-7-21
J Environ Manage. 2025-9
J Palliat Med. 2017-5
Prev Chronic Dis. 2022-6-23
Osong Public Health Res Perspect. 2018-10
Transl Anim Sci. 2020-9-21
IEEE Trans Med Imaging. 2024-10
Bioengineering (Basel). 2023-12-14
NPJ Digit Med. 2021-9-24
Am J Med. 2019-1-31