文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用电子健康记录对中心静脉导管相关血流感染进行静态和动态预测的建模方法比较(第2部分):随机森林模型

A comparison of modeling approaches for static and dynamic prediction of central line-associated bloodstream infections using electronic health records (part 2): random forest models.

作者信息

Albu Elena, Gao Shan, Stijnen Pieter, Rademakers Frank E, Janssens Christel, Cossey Veerle, Debaveye Yves, Wynants Laure, Van Calster Ben

机构信息

Department of Development & Regeneration, KU Leuven, Leuven, Belgium.

Management Information Reporting Department, University Hospitals Leuven, Leuven, Belgium.

出版信息

Diagn Progn Res. 2025 Jul 21;9(1):21. doi: 10.1186/s41512-025-00194-8.


DOI:10.1186/s41512-025-00194-8
PMID:40691852
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12278561/
Abstract

OBJECTIVE: Prognostic outcomes related to hospital admissions typically do not suffer from censoring, and can be modeled either categorically or as time-to-event. Competing events are common but often ignored. We compared the performance of static and dynamic random forest (RF) models to predict the risk of central line-associated bloodstream infections (CLABSI) using different outcome operationalizations. METHODS: We included data from 27,478 admissions to the University Hospitals Leuven, covering 30,862 catheter episodes (970 CLABSI, 1466 deaths and 28,426 discharges) to build static and dynamic RF models for binary (CLABSI vs no CLABSI), multinomial (CLABSI, discharge, death or no event), survival (time to CLABSI) and competing risks (time to CLABSI, discharge or death) outcomes to predict the 7-day CLABSI risk. Static models used information at the onset of the catheter episode, while dynamic models updated predictions daily for 30 days (landmark 0-30). We evaluated model performance across 100 train/test splits. RESULTS: Performance of binary, multinomial and competing risks models was similar: AUROC was 0.74 for predictions at catheter onset, rose to 0.77 for predictions at landmark 5, and decreased thereafter. Survival models overestimated the risk of CLABSI (E:O ratios between 1.2 and 1.6), and had AUROCs about 0.01 lower than other models. Binary and multinomial models had lowest computation times. Models including multiple outcome events (multinomial and competing risks) display a different internal structure compared to binary and survival models, choosing different variables for early splits in trees. DISCUSSION AND CONCLUSION: In the absence of censoring, complex modelling choices do not considerably improve the predictive performance compared to a binary model for CLABSI prediction in our studied settings. Survival models censoring the competing events at their time of occurrence should be avoided.

摘要

目的:与住院相关的预后结果通常不存在删失问题,可以按类别建模或作为事件发生时间建模。竞争事件很常见,但常常被忽视。我们比较了静态和动态随机森林(RF)模型在使用不同结局操作化方法预测中心静脉导管相关血流感染(CLABSI)风险方面的性能。 方法:我们纳入了鲁汶大学医院27478例住院病例的数据,涵盖30862次导管使用情况(970例CLABSI、1466例死亡和28426例出院),以构建用于二元(CLABSI与非CLABSI)、多项(CLABSI、出院、死亡或无事件)、生存(至CLABSI的时间)和竞争风险(至CLABSI、出院或死亡的时间)结局的静态和动态RF模型,以预测7天CLABSI风险。静态模型使用导管使用开始时的信息,而动态模型在30天内(时间点0 - 30)每日更新预测。我们在100次训练/测试分割中评估模型性能。 结果:二元、多项和竞争风险模型的性能相似:导管开始时预测的曲线下面积(AUROC)为0.74,在时间点5时预测的AUROC升至0.77,并在之后下降。生存模型高估了CLABSI风险(估计值与观察值之比在1.2至1.6之间),且AUROC比其他模型低约0.01。二元和多项模型的计算时间最短。与二元和生存模型相比,包含多个结局事件(多项和竞争风险)的模型显示出不同的内部结构,在树的早期分割中选择不同的变量。 讨论与结论:在不存在删失的情况下,与我们研究环境中用于CLABSI预测的二元模型相比,复杂的建模选择并不能显著提高预测性能。应避免在竞争事件发生时对其进行删失的生存模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/979cd5441699/41512_2025_194_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/d66801c09cfa/41512_2025_194_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/5aa07ac2bcb5/41512_2025_194_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/2799ca25288f/41512_2025_194_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/4f4a44696af8/41512_2025_194_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/a4b942e94f3c/41512_2025_194_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/979cd5441699/41512_2025_194_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/d66801c09cfa/41512_2025_194_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/5aa07ac2bcb5/41512_2025_194_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/2799ca25288f/41512_2025_194_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/4f4a44696af8/41512_2025_194_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/a4b942e94f3c/41512_2025_194_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/12278561/979cd5441699/41512_2025_194_Fig6_HTML.jpg

相似文献

[1]
A comparison of modeling approaches for static and dynamic prediction of central line-associated bloodstream infections using electronic health records (part 2): random forest models.

Diagn Progn Res. 2025-7-21

[2]
A comparison of modeling approaches for static and dynamic prediction of central-line bloodstream infections using electronic health records (part 1): regression models.

Diagn Progn Res. 2025-7-21

[3]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[4]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[5]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
Surgery for epilepsy.

Cochrane Database Syst Rev. 2015-7-1

[8]
Sexual Harassment and Prevention Training

2025-1

[9]
Surgical interventions for treating extracapsular hip fractures in older adults: a network meta-analysis.

Cochrane Database Syst Rev. 2022-2-10

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

本文引用的文献

[1]
Multiclass risk models for ovarian malignancy: an illustration of prediction uncertainty due to the choice of algorithm.

BMC Med Res Methodol. 2023-11-24

[2]
Early prediction of ventilator-associated pneumonia with machine learning models: A systematic review and meta-analysis of prediction model performance.

Eur J Intern Med. 2024-3

[3]
Systematic review finds risk of bias and applicability concerns for models predicting central line-associated bloodstream infection.

J Clin Epidemiol. 2023-9

[4]
Evaluating machine learning models for sepsis prediction: A systematic review of methodologies.

iScience. 2021-12-20

[5]
Sepsis prediction, early detection, and identification using clinical text for machine learning: a systematic review.

J Am Med Inform Assoc. 2022-1-29

[6]
A relationship between the incremental values of area under the ROC curve and of area under the precision-recall curve.

Diagn Progn Res. 2021-7-14

[7]
Early Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review.

Front Med (Lausanne). 2021-5-28

[8]
Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar.

BMJ. 2020-11-4

[9]
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy.

Intensive Care Med. 2020-3

[10]
Calibration: the Achilles heel of predictive analytics.

BMC Med. 2019-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索