文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多类别卵巢恶性肿瘤风险模型:算法选择导致预测不确定性的说明。

Multiclass risk models for ovarian malignancy: an illustration of prediction uncertainty due to the choice of algorithm.

机构信息

Department of Development and Regeneration, KU Leuven, Herestraat 49 box 805, Leuven, 3000, Belgium.

Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium.

出版信息

BMC Med Res Methodol. 2023 Nov 24;23(1):276. doi: 10.1186/s12874-023-02103-3.


DOI:10.1186/s12874-023-02103-3
PMID:38001421
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10668424/
Abstract

BACKGROUND: Assessing malignancy risk is important to choose appropriate management of ovarian tumors. We compared six algorithms to estimate the probabilities that an ovarian tumor is benign, borderline malignant, stage I primary invasive, stage II-IV primary invasive, or secondary metastatic. METHODS: This retrospective cohort study used 5909 patients recruited from 1999 to 2012 for model development, and 3199 patients recruited from 2012 to 2015 for model validation. Patients were recruited at oncology referral or general centers and underwent an ultrasound examination and surgery ≤ 120 days later. We developed models using standard multinomial logistic regression (MLR), Ridge MLR, random forest (RF), XGBoost, neural networks (NN), and support vector machines (SVM). We used nine clinical and ultrasound predictors but developed models with or without CA125. RESULTS: Most tumors were benign (3980 in development and 1688 in validation data), secondary metastatic tumors were least common (246 and 172). The c-statistic (AUROC) to discriminate benign from any type of malignant tumor ranged from 0.89 to 0.92 for models with CA125, from 0.89 to 0.91 for models without. The multiclass c-statistic ranged from 0.41 (SVM) to 0.55 (XGBoost) for models with CA125, and from 0.42 (SVM) to 0.51 (standard MLR) for models without. Multiclass calibration was best for RF and XGBoost. Estimated probabilities for a benign tumor in the same patient often differed by more than 0.2 (20% points) depending on the model. Net Benefit for diagnosing malignancy was similar for algorithms at the commonly used 10% risk threshold, but was slightly higher for RF at higher thresholds. Comparing models, between 3% (XGBoost vs. NN, with CA125) and 30% (NN vs. SVM, without CA125) of patients fell on opposite sides of the 10% threshold. CONCLUSION: Although several models had similarly good performance, individual probability estimates varied substantially.

摘要

背景:评估恶性肿瘤风险对于选择适当的卵巢肿瘤管理至关重要。我们比较了六种算法,以估计卵巢肿瘤为良性、交界性恶性、I 期原发性浸润性、II-IV 期原发性浸润性或继发性转移性的概率。

方法:本回顾性队列研究使用了 1999 年至 2012 年招募的 5909 名患者进行模型开发,以及 2012 年至 2015 年招募的 3199 名患者进行模型验证。患者在肿瘤转诊或普通中心招募,并在超声检查后≤120 天内进行手术。我们使用标准多项逻辑回归(MLR)、岭 MLR、随机森林(RF)、XGBoost、神经网络(NN)和支持向量机(SVM)开发模型。我们使用了九个临床和超声预测因子,但开发了包含或不包含 CA125 的模型。

结果:大多数肿瘤为良性(在开发数据和验证数据中分别为 3980 例和 1688 例),继发性转移性肿瘤最为罕见(分别为 246 例和 172 例)。有 CA125 的模型中,良性与任何类型恶性肿瘤的判别 c 统计量(AUROC)范围为 0.89 至 0.92,无 CA125 的模型为 0.89 至 0.91。有 CA125 的模型中,多类别 c 统计量范围为 0.41(SVM)至 0.55(XGBoost),无 CA125 的模型为 0.42(SVM)至 0.51(标准 MLR)。RF 和 XGBoost 对多类别校准效果最好。在同一患者中,由于模型不同,良性肿瘤的估计概率往往相差 0.2 以上(20%)。在常用的 10%风险阈值下,诊断恶性肿瘤的算法的净效益相似,但在较高阈值下,RF 的净效益略高。在模型比较中,有 3%(XGBoost 与 NN,有 CA125)和 30%(NN 与 SVM,无 CA125)的患者在 10%阈值的两侧分布情况截然不同。

结论:虽然有几种模型具有相似的性能,但个体概率估计值差异很大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/afda34978c73/12874_2023_2103_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/d72933e5b7b2/12874_2023_2103_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/72bb2ef531e1/12874_2023_2103_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/1c36cb106f03/12874_2023_2103_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/0d1e1dada508/12874_2023_2103_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/0b8c7535b7d5/12874_2023_2103_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/afda34978c73/12874_2023_2103_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/d72933e5b7b2/12874_2023_2103_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/72bb2ef531e1/12874_2023_2103_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/1c36cb106f03/12874_2023_2103_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/0d1e1dada508/12874_2023_2103_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/0b8c7535b7d5/12874_2023_2103_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e3/10668424/afda34978c73/12874_2023_2103_Fig6_HTML.jpg

相似文献

[1]
Multiclass risk models for ovarian malignancy: an illustration of prediction uncertainty due to the choice of algorithm.

BMC Med Res Methodol. 2023-11-24

[2]
Validation of models to diagnose ovarian cancer in patients managed surgically or conservatively: multicentre cohort study.

BMJ. 2020-7-30

[3]
Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models.

BMC Med Res Methodol. 2010-10-20

[4]
Prospective external validation of IOTA methods for classifying adnexal masses and retrospective assessment of two-step strategy using benign descriptors and ADNEX model: Portuguese multicenter study.

Ultrasound Obstet Gynecol. 2024-10

[5]
Risk-prediction models in postmenopausal patients with symptoms of suspected ovarian cancer in the UK (ROCkeTS): a multicentre, prospective diagnostic accuracy study.

Lancet Oncol. 2024-10

[6]
A spline-based tool to assess and visualize the calibration of multiclass risk predictions.

J Biomed Inform. 2015-4

[7]
Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study.

BMJ. 2014-10-15

[8]
Validation of ADNEX and IOTA two-step strategy and estimation of risk of complications during follow-up of adnexal masses in low-risk population.

Ultrasound Obstet Gynecol. 2024-9

[9]
Symptoms, CA125 and HE4 for the preoperative prediction of ovarian malignancy in Brazilian women with ovarian masses.

BMC Cancer. 2013-9-18

[10]
Assessment of protein biomarkers for preoperative differential diagnosis between benign and malignant ovarian tumors.

Gynecol Oncol. 2020-12

引用本文的文献

[1]
A comparison of modeling approaches for static and dynamic prediction of central line-associated bloodstream infections using electronic health records (part 2): random forest models.

Diagn Progn Res. 2025-7-21

[2]
Validation of machine learning-based models to predict and explain the risk of ovarian cancer: a multicentric study on -mutated patients undergoing risk-reducing salpingo-oophorectomy.

Front Oncol. 2025-4-15

[3]
Understanding overfitting in random forest for probability estimation: a visualization and simulation study.

Diagn Progn Res. 2024-9-27

本文引用的文献

[1]
Effective sample size: A measure of individual uncertainty in predictions.

Stat Med. 2024-3-30

[2]
Stability of clinical prediction models developed using statistical or machine learning methods.

Biom J. 2023-12

[3]
Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): explanation and elaboration.

BMJ. 2023-2-7

[4]
Minimum sample size for developing a multivariable prediction model using multinomial logistic regression.

Stat Methods Med Res. 2023-3

[5]
Risk prediction models for discrete ordinal outcomes: Calibration and the impact of the proportional odds assumption.

Stat Med. 2022-4-15

[6]
Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence.

BMJ Open. 2021-7-9

[7]
ESGO/ISUOG/IOTA/ESGE Consensus Statement on preoperative diagnosis of ovarian tumors.

Ultrasound Obstet Gynecol. 2021-7

[8]
Current Best Practice for Presenting Probabilities in Patient Decision Aids: Fundamental Principles.

Med Decis Making. 2021-10

[9]
Second opinion needed: communicating uncertainty in medical machine learning.

NPJ Digit Med. 2021-1-5

[10]
Time to reality check the promises of machine learning-powered precision medicine.

Lancet Digit Health. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索