Suppr超能文献

使用源自人诱导多能干细胞的心肌细胞构建的3D工程化心脏微组织进行致心律失常心脏毒性评估的计算辅助出发点评估。

Computationally-informed point of departure evaluation for proarrhythmic cardiotoxicity assessment using 3D engineered cardiac microtissues from human iPSC-derived cardiomyocytes.

作者信息

Daley Mark C, Bronk Peter, Kim Tae Yun, Soepriatna Arvin H, Tran Cao T, Mende Ulrike, Coulombe Kareen L K, Choi Bum-Rak

机构信息

Center for Biomedical Engineering, Brown University, Providence, RI, USA.

Cardiovascular Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA.

出版信息

Toxicol Sci. 2025 Jul 22. doi: 10.1093/toxsci/kfaf094.

Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising new approach for in vitro proarrhythmic cardiotoxicity assessment. However, variation due to differentiation batch, individual sample variation, and non-linear responses to test drugs complicate prediction of proarrhythmic drug concentrations. This study combines a computational human action potential (AP) model of hERG channel block with experimental data from three-dimensional hiPSC-CM engineered microtissues to optimize point of departure (POD) estimation of drug-induced prolongation of AP duration (APD). Computer simulations predicted that APD prolongation from hERG block follows a logistic curve and that >81% hERG block induced early afterdepolarizations (EADs) which significantly shifted the APD response curve. Curve fitting of APD response by logistic, bilinear breakpoint, and maximal curvature was more accurate prior to EAD onset. Goodness-of-fit testing indicated that logistic regression with ≥6 test concentrations was sufficient to accurately estimate PODs. Power analysis, based on experimental variations between batches (n = 14), molds (n = 57), and microtissues (n = 1701) predicted that PODs from 2∼3 batches with 10 microtissues per mold using a 5% threshold for APD prolongation detected proarrhythmic cardiotoxicity with a negligible false positive rate. We then applied this POD analysis to hiPSC-CM microtissue data after treatment with well characterized drugs (ie, cisapride, ranolazine, quinidine, and verapamil). Using bootstrapping, we estimated PODs and confidence intervals that matched concentrations known to cause proarrhythmic effects in patients. This study identified a robust method for calculating PODs for proarrhythmic cardiotoxicity risk in vitro and developed a framework for experimental design in this and other in vitro platforms.

摘要

人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)是体外致心律失常心脏毒性评估的一种有前景的新方法。然而,由于分化批次、个体样本差异以及对测试药物的非线性反应导致的变异性,使得预测致心律失常药物浓度变得复杂。本研究将hERG通道阻滞的计算性人类动作电位(AP)模型与来自三维hiPSC-CM工程化微组织的实验数据相结合,以优化药物诱导的动作电位时程(APD)延长的起始点(POD)估计。计算机模拟预测,hERG阻滞引起的APD延长遵循逻辑曲线,且>81%的hERG阻滞会诱发早期后除极(EADs),这显著改变了APD反应曲线。在EAD发作之前,用逻辑、双线性断点和最大曲率对APD反应进行曲线拟合更为准确。拟合优度测试表明,使用≥6种测试浓度的逻辑回归足以准确估计PODs。基于批次(n = 14)、模具(n = 57)和微组织(n = 1701)之间的实验变异性进行的功效分析预测,使用2至3个批次,每个模具10个微组织,以5%的APD延长阈值检测致心律失常心脏毒性,假阳性率可忽略不计。然后,我们将这种POD分析应用于用特征明确的药物(即西沙必利、雷诺嗪、奎尼丁和维拉帕米)处理后的hiPSC-CM微组织数据。使用自助法,我们估计了与已知在患者中引起致心律失常作用的浓度相匹配的PODs和置信区间。本研究确定了一种用于计算体外致心律失常心脏毒性风险PODs的稳健方法,并为该体外平台及其他体外平台的实验设计开发了一个框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验