Ghatak Arindam, Kanellopoulos Alexandros E, López-Hidalgo Cristina, Malits Andrea, Meng Yuhang, Schindler Florian, Zhang Shuang, Li Jiahang, Waldherr Steffen, Ribeiro Hugo, Kerou Melina, Hodgskiss Logan H, Dreer Maximilian, Mir Reyazul Rouf, Sharma Sandeep, Bachmann Gert, Karpouzas Dimitrios G, Schleper Christa, Papadopoulou Evangelia S, Chaturvedi Palak, Weckwerth Wolfram
Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
Plant Biotechnol J. 2025 Jul 21. doi: 10.1111/pbi.70248.
Excessive nitrogen use and low nitrogen use efficiency (NUE) in current agroecosystems are disrupting the global nitrogen cycle. Chemical inhibitors offer only temporary relief, while plant-derived biological nitrification inhibitors (BNIs) remain safer but underexplored. Identifying biological nitrification inhibition (BNI) traits in nitrogen-demanding crops like wheat is key to improving sustainability. In this study, a combined GC- and LC-MS platform was used to determine the metabolome of the root exudates of 44 diverse wheat genotypes originating from India and Austria. With more than 6000 metabolic features, a pronounced genotype-specific variation, a clear geographic pattern and an unexpected complexity of the root exudate metabolome were observed. A novel high-throughput assay utilizing diverse ammonia-oxidizing bacteria (AOB) and archaea (AOA) was developed for rapid BNI testing, highlighting distinct inhibition and even growth stimulation capacities between genotypes. Network analysis and advanced machine and deep learning analysis identified combinations of 32 metabolites linked to high BNI activity, including phenylpropanoids sinapinic acid, syringic acid and others, as well as glycosylated flavones isoschaftoside and others. This indicates that the concurrent presence of specific metabolites, rather than a single compound, drives nitrification inhibition in the rhizosphere. Variation in BNI activity among wheat genotypes, classified as either spring or winter types, suggests that root architecture modulates the dynamics of root exudation and the potential for nitrification inhibition. The unique combination of high-throughput metabolomics analysis and the BNI fast-track assay allows for screening of large germplasm collections as an essential requirement to introduce BNI and related NUE traits into modern breeding programmes.
当前农业生态系统中过量的氮素使用和较低的氮素利用效率(NUE)正在扰乱全球氮循环。化学抑制剂只能提供暂时缓解,而植物源生物硝化抑制剂(BNIs)则更安全但尚未得到充分探索。在需氮作物如小麦中鉴定生物硝化抑制(BNI)特性是提高可持续性的关键。在本研究中,采用气相色谱和液相色谱-质谱联用平台来测定来自印度和奥地利的44种不同小麦基因型根系分泌物的代谢组。观察到超过6000个代谢特征,根系分泌物代谢组存在明显的基因型特异性变异、清晰的地理模式和意想不到的复杂性。开发了一种利用多种氨氧化细菌(AOB)和古菌(AOA)的新型高通量测定法用于快速BNI测试,突出了基因型之间不同的抑制甚至生长刺激能力。网络分析以及先进的机器学习和深度学习分析确定了32种与高BNI活性相关的代谢物组合,包括苯丙烷类芥子酸、丁香酸等,以及糖基化黄酮异鼠李素苷等。这表明特定代谢物的同时存在而非单一化合物驱动根际硝化抑制。归类为春性或冬性类型的小麦基因型之间BNI活性的差异表明,根系结构调节根系分泌物动态和硝化抑制潜力。高通量代谢组学分析和BNI快速检测的独特组合允许对大型种质资源库进行筛选,这是将BNI和相关NUE特性引入现代育种计划的一项基本要求。