Ahmed Sheikh Rashel Al, Khatun Most Marzia
Department of Electrical, Electronic and Communication Engineering, Pabna University of Science and Technology, Pabna 6600, Rajshahi, Bangladesh.
Langmuir. 2025 Aug 5;41(30):19659-19673. doi: 10.1021/acs.langmuir.5c00800. Epub 2025 Jul 22.
The recombination losses in the bulk absorber and interfaces limit the power conversion efficiency of antimony selenide (SbSe) solar cells. This study aims to enhance efficiency in a new cadmium-free SbSe-based solar cell by using tungsten disulfide (WS) as the buffer layer and zinc phosphide (ZnP) as the back surface field (BSF) layer, simulated in SCAPS-1D software. It is revealed that the proposal of WS as the buffer and ZnP as the BSF confirms the appropriate band alignment at the SbSe/WS and ZnP/SbSe interfaces, respectively. The recombination of the carrier at both interfaces of the anticipated ZnP/SbSe/WS/FTO structure will be lower than in SbSe devices with other buffers and BSFs. To optimize the proposed SbSe PV device, the impacts of numerous inputs such as thickness, doping concentration, bulk and interface defects, charge transfer characteristics, temperature, and work function along with parasitic resistance on performance parameters have been investigated. The efficiency is improved from 22.09% to 29.5% with an open-circuit voltage () of 0.99 V, a short-circuit current density () of 34.99 mA/cm, and a fill factor (FF) of 85.36% at the optimized condition of the absorber (thickness = 1.0 μm, doping density = 10 cm, and defect density = 10 cm), buffer (thickness = 50 nm and doping density = 10 cm), and BSF (thickness = 100 nm and doping density = 10 cm). In addition, the high defect level of 10 cm is optimized at the SbSe/WS and ZnP/SbSe interfaces. Nickel is the optimal back contact metal, while resistances are found to be 0.5 Ω cm for series resistance and 10 Ω cm for shunt resistance. These findings will motivate researchers and experimentalists to produce low-cost, less toxic, environmentally friendly, and high-efficiency SbSe-based thin-film photovoltaic devices.
体吸收层和界面处的复合损失限制了硒化锑(SbSe)太阳能电池的功率转换效率。本研究旨在通过使用二硫化钨(WS)作为缓冲层和磷化锌(ZnP)作为背表面场(BSF)层,在SCAPS - 1D软件中模拟,提高新型无镉SbSe基太阳能电池的效率。结果表明,采用WS作为缓冲层和ZnP作为BSF的方案分别证实了在SbSe/WS和ZnP/SbSe界面处合适的能带排列。预期的ZnP/SbSe/WS/FTO结构两个界面处的载流子复合将低于具有其他缓冲层和BSF的SbSe器件。为了优化所提出的SbSe光伏器件,研究了诸如厚度、掺杂浓度、体缺陷和界面缺陷、电荷转移特性、温度、功函数以及寄生电阻等众多输入参数对性能参数的影响。在吸收层(厚度 = 1.0μm,掺杂密度 = 10/cm,缺陷密度 = 10/cm)、缓冲层(厚度 = 50nm,掺杂密度 = 10/cm)和BSF(厚度 = 100nm,掺杂密度 = 10/cm)的优化条件下,效率从22.09%提高到29.5%,开路电压()为0.99V,短路电流密度()为34.99mA/cm²,填充因子(FF)为85.36%。此外,在SbSe/WS和ZnP/SbSe界面处优化了10/cm的高缺陷水平。镍是最佳的背接触金属,串联电阻为0.5Ω·cm²,并联电阻为10Ω·cm²。这些发现将激励研究人员和实验人员生产低成本、低毒性、环境友好且高效的SbSe基薄膜光伏器件。