Zeghdar Kamal, Mansouri Siham, Dehimi Lakhdar, Pezzimenti Fortunato, Abdellattif Magda H, Alhuthali Abdullah M S, Raorane Chaitany Jayprakash, Balachandran R, Hossain M Khalid
Department of Electronics, Faculty of Electrical Engineering, University of Science and Technology Houari Boumediene, Algiers, 16111, Algeria.
Department of Electronics, Faculty of Technology, University Ferhat Abbas Setif 1, Setif, 19137, Algeria.
Sci Rep. 2025 Jul 13;15(1):25294. doi: 10.1038/s41598-025-10958-3.
The fast development of renewable resources requires high-performance and low-cost photovoltaic technologies. CZTS-based solar cells are promising candidates because of the earth-abundant materials and tunable bandgap. However, the efficiencies of these cells are hindered by interfacial recombination. In this study, we numerically analyze the incorporation of back-surface field (BSF) layers to reduce the current losses enhancing the efficiency of a CZTS device. By using systematic SCAPS-1D simulations, we investigated eight different BSF materials (PTAA, ZnP, SnS, MoOx, CuI, CNTS, VO, and CuO) leading us to conclude CuO as the one with the highest efficiency, resulting in a record power conversion efficiency (PCE) of 26.19% (~ 110% enhancement with respect to the reference cell performing 12.82%). The precise CuO band alignment (CBO: 1.0 eV, VBO: -0.28 eV) is the origin of an effective suppression of carrier recombination while facilitating an effective hole extraction. Promising results in terms of PCE, which remains on the order of 20%, are also achieved for an increased operational temperature of the simulated devices up to 420 K. In addition, further analyses show that the use of VO and CuI as BSF exceeds the conventional design as well (PCE > 24%), when the defect densities are below 10¹⁴ cm and the shunt resistance is > 10⁴Ω·cm². Thus, these studies clearly illustrate whether purposeful BSF integration can surmount fundamental shortcomings of CZTS solar cells, providing a feasible route to viable commercial devices.
可再生资源的快速发展需要高性能、低成本的光伏技术。基于CZTS的太阳能电池因其材料储量丰富且带隙可调而成为有潜力的候选者。然而,这些电池的效率受到界面复合的阻碍。在本研究中,我们通过数值分析了背表面场(BSF)层的引入,以减少电流损失,提高CZTS器件的效率。通过系统的SCAPS-1D模拟,我们研究了八种不同的BSF材料(PTAA、ZnP、SnS、MoOx、CuI、CNTs、VO和CuO),得出CuO是效率最高的材料,其功率转换效率(PCE)达到创纪录的26.19%(相对于参考电池的12.82%提高了约110%)。精确的CuO能带对准(CBO:1.0 eV,VBO:-0.28 eV)是有效抑制载流子复合并促进有效空穴提取的根源。对于模拟器件在高达420 K的工作温度下,PCE仍保持在20%左右,也取得了有前景的结果。此外,进一步分析表明,当缺陷密度低于10¹⁴ cm⁻³且并联电阻大于10⁴Ω·cm²时,使用VO和CuI作为BSF也超过了传统设计(PCE>24%)。因此,这些研究清楚地说明了有目的的BSF集成是否能够克服CZTS太阳能电池的基本缺点,为可行的商业器件提供了一条可行的途径。