Brady Ryan P, Yurchenko S N
Department of Physics and Astronomy, University College London, London, UK.
J Comput Chem. 2025 Aug 5;46(20):e70181. doi: 10.1002/jcc.70181.
The Born-Oppenheimer approximation assumes nuclear motion evolves on single, uncoupled potential energy surfaces, widely used to solve the time-independent Schrödinger equation for atomistic systems. However, for near-degenerate same-symmetry electronic states, avoided crossings in the potential energy curves occur and non-adiabatic couplings (NACs) become significant. In such cases, the adiabatic approximation is unsuitable for high-resolution spectroscopy. A unitary transformation to the diabatic representation can eliminate NACs, resulting in smooth molecular property curves that may cross. Computing this adiabatic-to-diabatic transformation (AtDT) is desirable but non-analytic for multi-state coupled systems, necessitating numerical solutions. It remains unclear if current methods yield numerically exact AtDTs ensuring rovibronic energy level equivalence between adiabatic and diabatic pictures. We demonstrate (for the first time) numerically exact equivalence of adiabatic and diabatic representations for -state diatomic molecules using ab initio data for , CH, and a model 10-state system. We show how the equivalence can be efficiently used to assess the importance of non-adiabatic effects and the impact of omitting them when computing rovibronic energies of diatomic molecules. The adiabatic and diabatic representations of the spectroscopic model, including all coupling terms, have been implemented in the diatomic code Duo.
玻恩-奥本海默近似假定核运动在单个、未耦合的势能面上演化,该近似广泛用于求解原子系统的定态薛定谔方程。然而,对于近简并的同对称电子态,势能曲线中会出现避免交叉,非绝热耦合(NACs)变得显著。在这种情况下,绝热近似不适用于高分辨率光谱学。向 diabatic 表象的幺正变换可以消除 NACs,得到可能交叉的平滑分子性质曲线。计算这种绝热到 diabatic 的变换(AtDT)是很有必要的,但对于多态耦合系统是非解析的,需要数值解。目前尚不清楚当前方法是否能产生数值精确的 AtDT,以确保绝热和 diabatic 图像之间的振转电子能级等效。我们(首次)使用 H₂、CH 的从头算数据以及一个 10 态模型系统,证明了双原子分子的绝热和 diabatic 表象在数值上的精确等效性。我们展示了这种等效性如何能有效地用于评估非绝热效应的重要性以及在计算双原子分子的振转电子能量时忽略这些效应的影响。光谱模型的绝热和 diabatic 表象,包括所有耦合项,已在双原子代码 Duo 中实现。