The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Theoretical Physical Chemistry, UR MolSys B6c, University of Liège, B4000 Liège, Belgium.
J Phys Chem Lett. 2023 May 18;14(19):4625-4630. doi: 10.1021/acs.jpclett.3c00666. Epub 2023 May 11.
Following a single photon VUV absorption, the N molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin-orbit induced transfer to the triplets. There is a forest of coupled electronic states, and we here aim to trace a path along the nonadiabatic couplings toward a particular exit channel. To achieve this, we apply a time-reversed quantum dynamical approach that corresponds to a dissociation running back. It begins with an atom-atom relative motion in a particular product channel. Starting with a Gaussian wave packet at the dissociation region of N and propagating it backward in time, one can see the population transferring among the triplets due to a strong nonadiabatic interaction between these states. Simultaneously, the optically active singlets get populated because of spin-orbit coupling to the triplets. Thus, backward propagation traces the nonradiative association of nitrogen atoms.
在单光子 VUV 吸收后,N 分子会通过不同反应性的 N 原子分解成不同的通道。光可及的单重态被束缚,而通过自旋轨道诱导转移到三重态发生解离。存在着一片耦合的电子态森林,我们旨在沿着非绝热耦合追踪一条通向特定出口通道的路径。为了实现这一目标,我们应用了一种时间反转量子动力学方法,它对应于一个反向的解离过程。它始于特定产物通道中原子间的相对运动。从 N 的解离区域开始,以高斯波包形式出发,将其在时间上向后传播,可以看到由于这些状态之间的强非绝热相互作用,三重态之间的种群转移。同时,由于自旋轨道耦合到三重态,光活性单重态也会被激发。因此,反向传播追踪了氮原子的非辐射缔合。