Suppr超能文献

评估野火GPT:用于野火蔓延定量预测的人工智能模型的比较分析。

Assessing WildfireGPT: a comparative analysis of AI models for quantitative wildfire spread prediction.

作者信息

Ramesh Meghana, Sun Ziheng, Li Yunyao, Zhang Li, Annam Sai Kiran, Fang Hui, Tong Daniel

机构信息

Center for Spatial Information Science and Systems, Department of Geography and Geoinformation Sciences, Department of Atmospheric Oceanic Earth Sciences, George Mason University, 4087 University Dr STE 3120, Fairfax, VA 22030 USA.

Department of Earth and Environmental Sciences, University of Texas, Arlington, USA.

出版信息

Nat Hazards (Dordr). 2025;121(11):13117-13130. doi: 10.1007/s11069-025-07344-7. Epub 2025 May 28.

Abstract

This study examines the application of WildfireGPT for wildfire forecasting, focusing on its limitations in quantitative predicting Fire Radiative Power (FRP) spread and comparing its performance with a specialized predictive model based on TabNet. While WildfireGPT is widely accessible and convenient for wildfire-related discussions, it lacks the specialized training, real-time data integration, and algorithmic precision required for reliable wildfire forecasting. To highlight these shortcomings, we conducted an experiment using real-world NASA Fire Radiative Power (FRP) datasets. Our TabNet-based model, trained on variables such as Vapor Pressure Deficit (VPD), temperature (T), pressure (P), and Fire Weather Index (FWI), demonstrated high correlation, with low Mean Absolute Error (MAE) and Mean Squared Error (MSE) in forecasting FRP values. In contrast, RAG (retrieval-augmented generation) and LLM (large language model)-based chatbots like WildfireGPT have unreliable performance on quantitative FRP forecasting with the same input data as prompts. The findings underscore the potential risks of over-reliance on general-purpose AI tools like WildfireGPT for quantitative modeling tasks in wildfire management. This study advocates for informed usage of AI tools, emphasizing the necessity of domain-specific models for accurate and actionable wildfire forecasting.

摘要

本研究考察了WildfireGPT在野火预测中的应用,重点关注其在定量预测火灾辐射功率(FRP)扩散方面的局限性,并将其性能与基于TabNet的专门预测模型进行比较。虽然WildfireGPT广泛可用且便于进行与野火相关的讨论,但它缺乏可靠的野火预测所需的专门训练、实时数据整合和算法精度。为了突出这些缺点,我们使用了真实的美国国家航空航天局(NASA)火灾辐射功率(FRP)数据集进行了一项实验。我们基于TabNet的模型在诸如水汽压亏缺(VPD)、温度(T)、压力(P)和火灾天气指数(FWI)等变量上进行训练,在预测FRP值时表现出高度相关性,平均绝对误差(MAE)和均方误差(MSE)较低。相比之下,像WildfireGPT这样基于检索增强生成(RAG)和大语言模型(LLM)的聊天机器人在以相同输入数据作为提示进行定量FRP预测时,性能不可靠。这些发现强调了在野火管理中对像WildfireGPT这样的通用人工智能工具过度依赖进行定量建模任务的潜在风险。本研究主张明智地使用人工智能工具,强调需要特定领域的模型来进行准确且可操作的野火预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15fc/12276125/dbfdcc50cc45/11069_2025_7344_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验