Anderson Justin Q, Darakjian Priscila, Hitzemann Robert, Cervera-Juanes Rita, Zimmerman Kip D, Reed Cheryl, Lockwood Denesa, Ozburn Angela R, Phillips Tamara J
Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
Wake Forest University School of Medicine, Department of Translational Neuroscience, Winston-Salem, NC 27157, USA.
Addict Neurosci. 2025 Jun;15. doi: 10.1016/j.addicn.2025.100209. Epub 2025 May 7.
Alcohol use disorder (AUD) is a complex disease with heritability of 0.5, indicating genetic and non-genetic factors contribute to risk. Identifying gene expression networks contributing to risk using post-mortem human brain tissue has the limitation of conflating risk for AUD with consequences of alcohol use. We leveraged mice selectively bred for differential ethanol preference from a highly genetically diverse population to overcome this limitation. Ethanol intake was highly correlated with preference, high-preferring (HP) mice consumed more sweet-but not bitter-tasting solutions compared to low-preferring (LP) mice, and the lines did not differ in rate of ethanol elimination. Adult, ethanol-naïve HP and LP mice contributed tissue from the central nucleus of the amygdala (CeA), a region critical to ethanol preference and intake. Single-nuclei and bulk RNA sequencing data were used to identify cell types and transcriptome changes related to selective breeding for differential risk for ethanol preference. Single nuclei analysis identified populations of inhibitory (48% of cells) and excitatory (23%) neurons, and non-neuronal (29%) cells, but no differences in cell-type composition or gene expression were identified between the lines. Bulk CeA analysis identified differences between the lines for: (1) gene expression (2996 genes), (2) expression variability (426 genes), and (3) wiring (407 significant gene-gene correlations). Overall, lower variance was found in the HP line. Reduced gene-gene correlation, also found in HP mice, suggested that selection for high preference induced changes in transcriptional regulation resulting in reduced connectivity, specific to gene networks enriched in markers for inhibitory neurons expressing and .
酒精使用障碍(AUD)是一种复杂疾病,遗传度约为0.5,表明遗传和非遗传因素都对患病风险有影响。利用死后的人脑组织来识别导致患病风险的基因表达网络存在局限性,即会将AUD的风险与酒精使用的后果混为一谈。我们利用从高度基因多样化群体中选择性培育出的具有不同乙醇偏好的小鼠来克服这一局限性。乙醇摄入量与偏好高度相关,与低偏好(LP)小鼠相比,高偏好(HP)小鼠摄入更多甜味但非苦味的溶液,并且这两个品系在乙醇消除率上没有差异。成年、未接触过乙醇的HP和LP小鼠提供了杏仁核中央核(CeA)的组织,该区域对乙醇偏好和摄入至关重要。利用单核和整体RNA测序数据来识别与因乙醇偏好风险不同而进行的选择性育种相关的细胞类型和转录组变化。单核分析确定了抑制性(约占细胞的48%)和兴奋性(约占23%)神经元群体以及非神经元(约占29%)细胞群体,但未发现这两个品系在细胞类型组成或基因表达上存在差异。对CeA进行的整体分析确定了这两个品系在以下方面存在差异:(1)基因表达(2996个基因),(2)表达变异性(426个基因),以及(3)连接性(407个显著的基因-基因相关性)。总体而言,在HP品系中发现方差较低。在HP小鼠中也发现基因-基因相关性降低,这表明对高偏好的选择诱导了转录调控的变化,导致连接性降低,这在富含表达 和 的抑制性神经元标记物的基因网络中尤为明显。