Suppr超能文献

利用生成式人工智能进行面试模拟,以提高生物教育中学生的研究技能。

Using generative AI for interview simulations to enhance student research skills in biology education.

作者信息

Millen Jonathan I

机构信息

Department of Biology, Division of Life Sciences, St. John Fisher University, Rochester, New York, USA.

出版信息

J Microbiol Biol Educ. 2025 Aug 21;26(2):e0012225. doi: 10.1128/jmbe.00122-25. Epub 2025 Jul 22.

Abstract

The Longevity Games Interview Simulator provides an innovative approach to preparing students for real-world research interactions by leveraging the capabilities of large language models (LLMs) like OpenAI's GPT-4o and Claude-3.7. This paper outlines the development and demonstrates the benefits of the simulator, designed to mimic interviews with older adults to enhance students' interviewing skills, empathy, and cultural competence. Key outcomes included preparing students for real-world interactions with interview subjects, improving their ability to identify and properly document protected health information (PHI), gaining experience in asking relevant follow-up questions, and directing conversations to achieve interview goals. The simulator used generative AI models to create realistic interview scenarios based on demographic data from Rochester, NY. Components of the simulator included a student interview-question selection and creation portion, an interview-guide worksheet, a post-simulation quiz on the materials, and a reflective exercise focusing on information gathering and ethical considerations regarding PHI. This tool was designed for the Science of Aging course's CURE (Course-Based Undergraduate Research Experience) to provide students with practical, repeatable interview practice. A small pilot study with senior nursing students indicated that the simulator improved students' confidence, preparedness, and understanding of ethical considerations. This paper also discusses how the simulator has potential for adaptation across educational contexts and encourages educators to develop their own custom interview simulations.

摘要

长寿游戏面试模拟器提供了一种创新方法,通过利用像OpenAI的GPT - 4o和Claude - 3.7这样的大语言模型(LLMs)的功能,让学生为现实世界的研究互动做好准备。本文概述了该模拟器的开发过程,并展示了其益处,该模拟器旨在模拟与老年人的访谈,以提高学生的访谈技巧、同理心和文化能力。主要成果包括让学生为与访谈对象的现实世界互动做好准备,提高他们识别和正确记录受保护健康信息(PHI)的能力,获得询问相关后续问题的经验,以及引导对话以实现访谈目标。该模拟器使用生成式人工智能模型,根据纽约罗切斯特的人口统计数据创建逼真的访谈场景。模拟器的组成部分包括学生访谈问题选择和创建部分、访谈指南工作表、关于材料的模拟后测验,以及一个侧重于信息收集和关于PHI的伦理考量的反思练习。这个工具是为衰老科学课程的基于课程的本科研究经验(CURE)设计的,为学生提供实用的、可重复的访谈练习。一项针对高级护理专业学生的小型试点研究表明,该模拟器提高了学生的信心、准备程度以及对伦理考量的理解。本文还讨论了该模拟器在不同教育背景下具有适应性的潜力,并鼓励教育工作者开发自己的定制访谈模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63ab/12369313/86404cdc111b/jmbe.00122-25.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验