Sapnik Adam F, Chater Philip A, Keeble Dean S, Evans John S O, Bertolotti Federica, Guagliardi Antonietta, Støckler Lise J, Harbourne Elodie A, Borup Anders B, Silberg Rebecca S, Descamps Adrien, Prescher Clemens, Klee Benjamin D, Phelipeau Axel, Ullah Imran, Medina Kárel G, Bird Tobias A, Kaznelson Viktoria, Lynn William, Goodwin Andrew L, Iversen Bo B, Crepisson Celine, Bozin Emil S, Jensen Kirsten M Ø, McBride Emma E, Neder Reinhard B, Robinson Ian, Wark Justin S, Andrzejewski Michał, Boesenberg Ulrike, Brambrink Erik, Camarda Carolina, Cerantola Valerio, Goede Sebastian, Höppner Hauke, Humphries Oliver S, Konopkova Zuzana, Kujala Naresh, Michelat Thomas, Nakatsutsumi Motoaki, Pelka Alexander, Preston Thomas R, Randolph Lisa, Roeper Michael, Schmidt Andreas, Strohm Cornelius, Tang Minxue, Talkovski Peter, Zastrau Ulf, Appel Karen, Keen David A
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
Diamond Light Source, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxford, United Kingdom.
IUCrJ. 2025 Sep 1;12(Pt 5):531-547. doi: 10.1107/S205225252500538X.
High-quality total scattering data, a key tool for understanding atomic-scale structure in disordered materials, require stable instrumentation and access to high momentum transfers. This is now routine at dedicated synchrotron instrumentation using high-energy X-ray beams, but it is very challenging to measure a total scattering dataset in less than a few microseconds. This limits their effectiveness for capturing structural changes that occur at the much faster timescales of atomic motion. Current X-ray free-electron lasers (XFELs) provide femtosecond-pulsed X-ray beams with maximum energies of ∼24 keV, giving the potential to measure total scattering and the attendant pair distribution functions (PDFs) on femtosecond timescales. We demonstrate that this potential has been realized using the HED scientific instrument at the European XFEL and present normalized total scattering data for 0.35 Å < Q < 16.6 Å and their PDFs from a broad spectrum of materials, including crystalline, nanocrystalline and amorphous solids, liquids and clusters in solution. We analyzed the data using a variety of methods, including Rietveld refinement, small-box PDF refinement, joint reciprocal-real-space refinement, cluster refinement and Debye scattering analysis. The resolution function of the setup is also characterized. We conclusively show that high-quality data can be obtained from a single ∼30 fs XFEL pulse for multiple different sample types. Our efforts not only significantly increase the existing maximum reported Q range for an S(Q) measured at an XFEL but also mean that XFELs are now a viable X-ray source for the broad community of people using reciprocal-space total scattering and PDF methods in their research.
高质量的全散射数据是理解无序材料原子尺度结构的关键工具,它需要稳定的仪器设备以及高动量转移条件。这在使用高能X射线束的专用同步加速器仪器上现已成为常规操作,但在不到几微秒的时间内测量一个全散射数据集极具挑战性。这限制了它们在捕捉原子运动更快时间尺度上发生的结构变化方面的有效性。当前的X射线自由电子激光(XFEL)提供飞秒脉冲X射线束,最大能量约为24 keV,这使得在飞秒时间尺度上测量全散射及相关的对分布函数(PDF)成为可能。我们证明,利用欧洲XFEL的HED科学仪器已实现了这一潜力,并展示了0.35 Å < Q < 16.6 Å范围内的归一化全散射数据及其来自多种材料的PDF,这些材料包括晶体、纳米晶体和非晶态固体、液体以及溶液中的团簇。我们使用了多种方法分析数据,包括Rietveld精修、小盒PDF精修、联合倒易实空间精修、团簇精修和德拜散射分析。还对该装置的分辨率函数进行了表征。我们最终表明,对于多种不同的样品类型,从单个约30 fs的XFEL脉冲中就能获得高质量的数据。我们的工作不仅显著增加了在XFEL上测量的S(Q)的现有最大报道Q范围,还意味着XFEL现在对于在研究中使用倒易空间全散射和PDF方法的广大科研人员来说,是一种可行的X射线源。