Suppr超能文献

纳米级VO忆阻器中的皮秒飞焦耳电阻开关

Picosecond Femtojoule Resistive Switching in Nanoscale VO Memristors.

作者信息

Schmid Sebastian Werner, Pósa László, Török Tímea Nóra, Sánta Botond, Pollner Zsigmond, Molnár György, Horst Yannik, Volk János, Leuthold Juerg, Halbritter András, Csontos Miklós

机构信息

Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.

Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Augsburg 86159, Germany.

出版信息

ACS Nano. 2024 Aug 20;18(33):21966-21974. doi: 10.1021/acsnano.4c03840. Epub 2024 Aug 8.

Abstract

Beyond-Moore computing technologies are expected to provide a sustainable alternative to the von Neumann approach not only due to their down-scaling potential but also via exploiting device-level functional complexity at the lowest possible energy consumption. The dynamics of the Mott transition in correlated electron oxides, such as vanadium dioxide, has been identified as a rich and reliable source of such functional complexity. However, its full potential in high-speed and low-power operation has been largely unexplored. We fabricated nanoscale VO devices embedded in a broadband test circuit to study the speed and energy limitations of their resistive switching operation. Our picosecond time-resolution, real-time resistive switching experiments and numerical simulations demonstrate that tunable low-resistance states can be set by the application of 20 ps long, <1.7 V amplitude voltage pulses at 15 ps incubation times and switching energies starting from a few femtojoule. Moreover, we demonstrate that at nanometer-scale device sizes not only the electric field induced insulator-to-metal transition but also the thermal conduction limited metal-to-insulator transition can take place at time scales of 100s of picoseconds. These orders of magnitude breakthroughs can be utilized to design high-speed and low-power dynamical circuits for a plethora of neuromorphic computing applications from pattern recognition to numerical optimization.

摘要

超越摩尔计算技术有望为冯·诺依曼方法提供一种可持续的替代方案,这不仅是因为它们具有缩小尺寸的潜力,还在于能够以尽可能低的能耗利用器件级功能复杂性。诸如二氧化钒等关联电子氧化物中的莫特转变动力学,已被确认为这种功能复杂性的丰富且可靠的来源。然而,其在高速和低功耗运行方面的全部潜力在很大程度上尚未得到探索。我们制造了嵌入宽带测试电路的纳米级VO₂器件,以研究其电阻开关操作的速度和能量限制。我们的皮秒时间分辨率、实时电阻开关实验和数值模拟表明,在15皮秒的孵育时间和从几飞焦耳开始的开关能量下,通过施加20皮秒长、幅度小于1.7V的电压脉冲,可以设置可调低电阻状态。此外,我们证明,在纳米级器件尺寸下,不仅电场诱导的绝缘体到金属转变,而且热传导限制的金属到绝缘体转变都可以在几百皮秒的时间尺度上发生。这些数量级的突破可用于设计高速和低功耗动态电路,以用于从模式识别到数值优化的大量神经形态计算应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff9/11342367/e45922623623/nn4c03840_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验