Suppr超能文献

机器学习在结直肠癌中的应用:从早期检测到个性化治疗。

Machine learning applications in colorectal cancer: from early detection to personalized treatment.

作者信息

Tabasum Shaik Yasmin, Valli Nachiyar C, Sunkar Swetha

机构信息

Dept of Bioinformatics, Sathyabama Institute of Science and Technology, OMR, Chennai, 600119 Tamilnadu, India.

Dean, Publications, Department of Research, Meenakshi Academy of Higher education and Research, 12, Vembuliamman koil st, West KK Nagar, Chennai 600078, Tamilnadu, India.

出版信息

Integr Biol (Camb). 2025 Jan 8;17. doi: 10.1093/intbio/zyaf013.

Abstract

Colorectal cancer (CRC) is a significant health challenge in the world, with incidence being increasingly reported among the young population. Machine learning, therefore, is revolutionizing care in CRC, including providing advancements in early detection, staging, recurrence prediction, and individualized medicine. Techniques for analysis include support vector machines, random forests, and neural networks, which allow complex analyses of datasets, including genetic profiles and imaging data, with an improvement in diagnostic accuracy and treatment outcomes. Machine learning-driven personalized treatment strategies empower clinicians to tailor therapies to individual patients, optimizing efficacy while reducing side effects. However, integration of Machine learning (ML) in CRC management faces challenges like data quality, validation, and smooth adaptation into clinical workflow. Overcoming these barriers through multi-institutional collaboration and strong validation frameworks will be essential to unlock the full potential of ML. Advancement in research will enable the transformation of CRC care to provide more accurate diagnoses and targeted treatments, ultimately changing patient outcomes. Insight box This review examines the transformative impact of machine learning (ML) in colorectal cancer (CRC) research and care. By integrating multi-omics, radiomics, and clinical data, ML models outperform traditional diagnostic and prognostic methods, enabling precise risk prediction, personalized treatment, and early recurrence detection. The amalgamation of supervised learning, neural networks, and deep learning yields actionable insights that improve patient outcomes and address unmet needs in CRC management. The review also discusses solutions to challenges such as data standardization, ethics, and clinical workflow integration, offering a roadmap for real-world ML adoption. This work highlights the synergy between computational advances and oncology, providing a forward-thinking framework for CRC care.

摘要

结直肠癌(CRC)是全球一项重大的健康挑战,在年轻人群中的发病率报告日益增加。因此,机器学习正在彻底改变CRC的治疗方式,包括在早期检测、分期、复发预测和个性化医疗方面取得进展。分析技术包括支持向量机、随机森林和神经网络,这些技术能够对数据集进行复杂分析,包括基因图谱和影像数据,从而提高诊断准确性和治疗效果。机器学习驱动的个性化治疗策略使临床医生能够为个体患者量身定制治疗方案,在优化疗效的同时减少副作用。然而,将机器学习(ML)整合到CRC管理中面临着数据质量、验证以及顺利融入临床工作流程等挑战。通过多机构合作和强大的验证框架克服这些障碍对于释放ML的全部潜力至关重要。研究的进展将使CRC治疗发生转变,以提供更准确的诊断和靶向治疗,最终改变患者的治疗结果。洞察框 本综述探讨了机器学习(ML)在结直肠癌(CRC)研究和治疗中的变革性影响。通过整合多组学、放射组学和临床数据,ML模型优于传统的诊断和预后方法,能够进行精确的风险预测、个性化治疗和早期复发检测。监督学习、神经网络和深度学习的融合产生了可操作的见解,改善了患者的治疗结果并满足了CRC管理中未满足的需求。该综述还讨论了数据标准化、伦理和临床工作流程整合等挑战的解决方案,为在现实世界中采用ML提供了路线图。这项工作突出了计算进展与肿瘤学之间的协同作用,为CRC治疗提供了一个前瞻性的框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验