Suppr超能文献

抑制与更新共享共同资源:来自信号检测理论和漂移扩散模型的贝叶斯证据。

Inhibition and updating share common resources: Bayesian evidence from signal detection theory and drift diffusion model.

作者信息

Sun Yuhong, Lin Yaohui, Han Shangfeng

机构信息

Department of Psychology, Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, No. 230 Waihuanxi Ave., Panyu District, Guangzhou, China.

出版信息

Psychol Res. 2025 Jul 22;89(4):128. doi: 10.1007/s00426-025-02160-x.

Abstract

Inhibition and updating are fundamental cognitive functions in humans, yet the nature of their relationship-whether shared or distinct-remains ambiguous. This study investigates the relationship between inhibition and updating within a unified task framework using a novel paradigm that integrates the N-back task with the congruent/incongruent Stroop task, creating conditions that require either updating alone or both inhibition and updating. Employing Signal Detection Theory (SDT) and the hierarchical drift diffusion model (HDDM), the results provided overall extremely strong Bayesian evidence that participants exhibited longer response times and lower accuracy in conditions requiring both inhibition and updating, compared to those requiring only updating. SDT analysis revealed a decline in discriminability, while HDDM analysis showed slower drift rates, longer non-decision times and a lower decision threshold in inhibition-demanding conditions. Even after controlling for the congruency sequence effect and current stimulus attributes, the results remained robust, showing a larger inhibition effect size compared to the traditional Stroop task. These findings suggest that inhibition consumes cognitive resources, impairing updating performance, and implying that both functions may rely on shared cognitive resources. Overall, the results elucidate the relationship between these fundamental executive functions, supporting the notion that inhibition and updating share cognitive resources.

摘要

抑制和更新是人类基本的认知功能,然而它们之间关系的本质——是共享的还是不同的——仍不明确。本研究在一个统一的任务框架内,使用一种将N-回溯任务与一致/不一致斯特鲁普任务相结合的新颖范式,来探究抑制和更新之间的关系,创造出仅需更新或同时需要抑制和更新的条件。采用信号检测理论(SDT)和分层漂移扩散模型(HDDM),结果提供了总体极其有力的贝叶斯证据,表明与仅需更新的条件相比,参与者在同时需要抑制和更新的条件下表现出更长的反应时间和更低的准确率。SDT分析显示辨别力下降,而HDDM分析表明在需要抑制的条件下漂移率更慢、非决策时间更长且决策阈值更低。即使在控制了一致性序列效应和当前刺激属性之后,结果仍然稳健,与传统斯特鲁普任务相比显示出更大的抑制效应量。这些发现表明抑制消耗认知资源,损害更新表现,并意味着这两种功能可能依赖于共享的认知资源。总体而言,结果阐明了这些基本执行功能之间的关系,支持了抑制和更新共享认知资源的观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验