Chowdhury Nazib E Elahi Khan, Jawad Alif, Rahman Anfalur, Khan Mohammad Jane Alam
Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
J Mol Model. 2025 Jul 22;31(8):214. doi: 10.1007/s00894-025-06439-z.
High-entropy alloys (HEAs) represent a class of advanced materials with superior mechanical, thermal, and chemical properties. FeNiCoCrCu HEA has been of particular interest due to its excellent tensile strength, corrosion resistance, and thermal stability. However, it is a significant challenge to understand and optimize the mechanical properties of such alloys due to the complex structure. Molecular dynamics (MD) is a popular choice in investigating atomic-scale characteristics but is computationally costly for large polycrystal systems. Machine learning approaches have seen growing interest as surrogate models that can produce accurate predictions and lower computational costs. This study demonstrates the first application of Multi-fidelity Physics Informed Neural Network (MPINN) model for predicting the tensile strength of FeNiCoCrCu. This study generates a large dataset of tensile strength for different compositions of FeNiCoCrCu HEA and uses it to train a MPINN model. The MPINN model successfully predicts the tensile strength of FeNiCoCrCu for different compositions and validates the effectiveness of the MD data-enabled MPINN model in making accurate predictions of material properties.
This study uses LAMMPS for the molecular dynamics simulations and TensorFlow for building and running the machine learning models. The low-fidelity (LF) and high-fidelity (HF) data for the machine learning model are obtained from MD simulations of small single crystals and large polycrystals, respectively. MD simulation systems are created using Atomsk, and EAM potential is used for the forcefield. The simulations are visualized using OVITO. The MPINN model utilizes both linear and non-linear relations between LF and HF data. In TensorFlow, the machine learning model is optimized using the Adam optimizer, and L2 regularization is used to prevent overfitting.
高熵合金(HEA)是一类具有优异机械、热和化学性能的先进材料。FeNiCoCrCu高熵合金因其出色的拉伸强度、耐腐蚀性和热稳定性而备受关注。然而,由于其结构复杂,理解和优化此类合金的机械性能是一项重大挑战。分子动力学(MD)是研究原子尺度特性的常用方法,但对于大型多晶系统计算成本高昂。机器学习方法作为能够产生准确预测并降低计算成本的替代模型,受到越来越多的关注。本研究展示了多保真物理信息神经网络(MPINN)模型在预测FeNiCoCrCu拉伸强度方面的首次应用。本研究生成了不同成分的FeNiCoCrCu高熵合金拉伸强度的大型数据集,并使用它来训练MPINN模型。MPINN模型成功预测了不同成分的FeNiCoCrCu的拉伸强度,并验证了基于MD数据的MPINN模型在准确预测材料性能方面的有效性。
本研究使用LAMMPS进行分子动力学模拟,使用TensorFlow构建和运行机器学习模型。机器学习模型的低保真(LF)和高保真(HF)数据分别从小单晶和大单晶的MD模拟中获得。使用Atomsk创建MD模拟系统,并使用EAM势作为力场。使用OVITO对模拟进行可视化。MPINN模型利用LF和HF数据之间的线性和非线性关系。在TensorFlow中,使用Adam优化器对机器学习模型进行优化,并使用L2正则化防止过拟合。