Lee Seungwon, Song Geunmoo, Jeong Kyu-Sung
Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Acc Chem Res. 2025 Aug 5;58(15):2466-2476. doi: 10.1021/acs.accounts.5c00358. Epub 2025 Jul 22.
ConspectusThe construction of synthetic counterparts that mimic the structures and functions of proteins and nucleic acids has become a central focus of research in supramolecular chemistry. Aromatic foldamers are capable of folding into secondary or higher-order structures that resemble those of biomacromolecules. Over the past two decades, a variety of aromatic foldamers have been developed, including -arylene ethynylene foldamers summarized in this Account. -Arylene ethynylene foldamers consist of N- and NH-containing aryl heterocycles alternately linked through ethynyl bonds. These foldamers adopt stable helical structures with internal tubular cavities, driven by dipole-dipole and π-stacking interactions. Indolocarbazole-pyridine (IP) foldamers have demonstrated how folding stability and helical handedness can be modulated, with applications in anion recognition and sensing. Moreover, an indolocarbazole-naphthyridine (IN) foldamer with a larger internal cavity enables the binding of simple monosaccharides such as glucose and galactose. Utilizing dynamic covalent bonds and guest-directed synthesis, homochiral foldamers with covalently fixed, one-handed helical cavities have been quantitatively synthesized. These foldamers selectively bind the chiral guests used in their syntheses over enantiomeric or analogous guests. Furthermore, the quantitative assembly of imine-linked foldamers can be achieved from short precursors in the presence of appropriate guests. Interestingly, an imine-linked foldamer forms 2:2 complexes with both methyl β-d-glucopyranoside and methyl β-d-galactopyranoside, with temperature changes inducing complete switching of interacting guests. Each complex contains two identical cavities generated through guest-adaptive folding in a domain-swapping manner, enabling strong and selective binding. Finally, nonclassical helical duplexes are described, exhibiting duplex-to-duplex transformations in response to external stimuli. Future studies in aromatic foldamer chemistry may focus on the development of smart materials, enzyme-like catalysts, and bioapplicable foldamers.
综述
构建模拟蛋白质和核酸结构与功能的合成类似物已成为超分子化学研究的核心焦点。芳香折叠体能够折叠成类似于生物大分子的二级或更高阶结构。在过去二十年中,已开发出多种芳香折叠体,包括本综述中总结的亚芳基乙炔折叠体。亚芳基乙炔折叠体由通过乙炔键交替连接的含氮和含氮氢的芳基杂环组成。这些折叠体通过偶极 - 偶极和π - 堆积相互作用形成具有内部管状空腔的稳定螺旋结构。吲哚并咔唑 - 吡啶(IP)折叠体已展示了如何调节折叠稳定性和螺旋手性,并应用于阴离子识别和传感。此外,具有较大内腔的吲哚并咔唑 - 萘啶(IN)折叠体能够结合葡萄糖和半乳糖等简单单糖。利用动态共价键和客体导向合成,已定量合成了具有共价固定的单手螺旋空腔的同手性折叠体。这些折叠体在合成中选择性地结合手性客体,而不是对映体或类似客体。此外,在适当客体存在下,可从短前体实现亚胺连接折叠体的定量组装。有趣的是,一种亚胺连接折叠体与甲基β - D - 吡喃葡萄糖苷和甲基β - D - 吡喃半乳糖苷均形成2:2复合物,温度变化会导致相互作用客体的完全切换。每个复合物包含两个通过结构域交换方式进行客体适应性折叠产生的相同空腔,从而实现强而选择性的结合。最后,描述了非经典螺旋双链体,其在外部刺激下表现出双链到双链的转变。芳香折叠体化学的未来研究可能集中在智能材料、类酶催化剂和生物适用折叠体的开发上。