Bukhari Hassaan A, Kewalramani Shivangi, Witzigreuter Luke, Pourbemany Jafar, Barbato Natalia Amadio, Daw Jad, Dhar Rajkumar, Rincon-Choles Hernan, Rao Panduranga, Bhat Zeenat, Soliman Elsayed Z, Tereshchenko Larisa G
Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
Ohio State University College of Medicine, Ohio, USA.
Comput Biol Med. 2025 Jul 21;196(Pt B):110787. doi: 10.1016/j.compbiomed.2025.110787.
An electrocardiogram (ECG) is commonly used in clinical practice. Poor data quality, artifacts, and misplacement of electrodes have to be identified before the clinical interpretation of ECG. We aimed to develop an algorithm to automatically identify ECG artifacts and lead misplacement.
We utilized 42,743 ECGs from UK Biobank (UKB; n = 42,743 participants; age 55±8 y; cardiovascular disease 1.2 %; diabetes 0.9 %; chronic kidney disease 0.5 %; ventricular pacing 0 %) for the algorithm development and 41,495 ECGs from the Chronic Renal Insufficiency Cohort (CRIC; n = 3912 participants; age 63 ± 11 y; cardiovascular disease 78 %; diabetes 56 %; chronic kidney disease 100 %; ventricular pacing 3.5 %) for external validation. We developed a fully automated algorithm to detect non-physiological ECG artifacts, such as high or low peak-to-peak amplitude, frequency-based outliers, and misplaced electrodes. In UKB, the algorithm demonstrated a sensitivity of 84.9 %, a specificity of 100 %, an ROC AUC of 0.924, and a Kappa statistic of 0.91. We observed 98.81 % agreement between ground truth and algorithm-identified non-physiological ECG artifacts, significantly (p < 0.00001) larger than the random agreement of 86.91 % expected at the observed 7.6 % prevalence. The misplacement of limb lead electrodes in UKB affected the Wilson Central Terminal. In CRIC, we observed an agreement of 94.90 %, which was significantly (p < 0.00001) better than by chance (93.27 % at the observed 5.3 % prevalence, including pacing artifacts), 16.8 % sensitivity, 99.3 % specificity, and an ROC AUC of 0.580.
The fully automated algorithm can accurately detect ECG artifacts and potential lead misplacement, thus permitting automated quality control of ECG analysis. The code is provided at https://github.com/Tereshchenkolab/ECG-quality-control.
心电图(ECG)在临床实践中常用。在对心电图进行临床解读之前,必须识别数据质量差、伪迹和电极放置不当的情况。我们旨在开发一种算法,以自动识别心电图伪迹和导联放置不当。
我们利用英国生物银行(UKB;n = 42743名参与者;年龄55±8岁;心血管疾病1.2%;糖尿病0.9%;慢性肾脏病0.5%;心室起搏0%)的42743份心电图进行算法开发,并利用慢性肾功能不全队列(CRIC;n = 3912名参与者;年龄63±11岁;心血管疾病78%;糖尿病56%;慢性肾脏病100%;心室起搏3.5%)的41495份心电图进行外部验证。我们开发了一种全自动算法,以检测非生理性心电图伪迹,如峰峰值过高或过低、基于频率的异常值以及电极放置不当。在UKB中,该算法的灵敏度为84.9%,特异性为100%,ROC曲线下面积为0.924,Kappa统计量为0.91。我们观察到,真实情况与算法识别的非生理性心电图伪迹之间的一致性为98.81%,显著高于(p < 0.00001)在观察到的7.6%患病率下预期的86.91%的随机一致性。UKB中肢体导联电极放置不当影响威尔逊中心端。在CRIC中,我们观察到一致性为94.90%,显著高于(p < 0.00001)偶然情况(在观察到的5.3%患病率下为93.27%,包括起搏伪迹),灵敏度为16.8%,特异性为99.3%,ROC曲线下面积为0.580。
该全自动算法可准确检测心电图伪迹和潜在的导联放置不当,从而实现心电图分析的自动质量控制。代码可在https://github.com/Tereshchenkolab/ECG-quality-control获取。