Suppr超能文献

分析英国生物银行中的心电图特征并预测心脏风险。

Analysing electrocardiographic traits and predicting cardiac risk in UK biobank.

作者信息

Ramírez Julia, van Duijvenboden Stefan, Young William J, Orini Michele, Jones Aled R, Lambiase Pier D, Munroe Patricia B, Tinker Andrew

机构信息

Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.

Institute of Cardiovascular Science, University College London, London, UK.

出版信息

JRSM Cardiovasc Dis. 2021 Jun 12;10:20480040211023664. doi: 10.1177/20480040211023664. eCollection 2021 Jan-Dec.

Abstract

The electrocardiogram (ECG) is a commonly used clinical tool that reflects cardiac excitability and disease. Many parameters are can be measured and with the improvement of methodology can now be quantified in an automated fashion, with accuracy and at scale. Furthermore, these measurements can be heritable and thus genome wide association studies inform the underpinning biological mechanisms. In this review we describe how we have used the resources in UK Biobank to undertake such work. In particular, we focus on a substudy uniquely describing the response to exercise performed at scale with accompanying genetic information.

摘要

心电图(ECG)是一种常用的临床工具,可反映心脏的兴奋性和疾病情况。许多参数都可以测量,并且随着方法学的改进,现在可以以自动化方式进行量化,具有准确性且可大规模操作。此外,这些测量结果可能具有遗传性,因此全基因组关联研究有助于揭示潜在的生物学机制。在本综述中,我们描述了我们如何利用英国生物银行的资源开展此类工作。特别是,我们重点关注一项子研究,该研究独特地描述了在大规模运动时的反应以及伴随的遗传信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d04f/8202245/cc66ecf1c55b/10.1177_20480040211023664-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验