Suppr超能文献

作为心电图分析算法评估组成部分的心电图噪声提取工具的临床评估。

Clinical Evaluation of the ECG Noise Extraction Tool as a Component of ECG Analysis Algorithms Evaluation.

作者信息

Suliman Ahmad, Farahmand Masoud, Galeotti Loriano, Scully Christopher G

出版信息

IEEE Trans Biomed Eng. 2025 Jul;72(7):2062-2071. doi: 10.1109/TBME.2024.3386493.

Abstract

OBJECTIVE

The aim of this work is to demonstrate the performance of the ECG noise extraction tool (ECGNExT) which provides estimates of ECG noise that are not significantly different from the inherent noise in an ECG generated by motion artifacts and other sources. In addition, this paper elaborates on use of ECGNExT in an algorithm evaluation context comparing two QRS detection algorithms.

METHODS

140 simultaneous pairs of clean ECGs and ECGs corrupted with motion-induced noise from 29 participants under five different and separate motion conditions were collected and analyzed. Estimates of the noise component of the ECGs recorded with noise were obtained using ECGNExT and were then added to the clean ECGs yielding estimated ECGs with noise. Root mean squared error (RMSE) between the recorded and estimated ECGs with noise was calculated for temporal comparison, and band powers of the signals were calculated for spectral comparison.

RESULTS

A t-test revealed that the mean RMSE < 150-microvolts with p-value < 0.001 and ${\bm{\alpha \ }} = {\bm{\ }}0.01$, and equivalence tests showed that the band powers of the two ECGs were statistically equivalent with ${\bm{\alpha \ }} = {\bm{\ }}0.01$.

CONCLUSION

ECGNExT can reliably estimate the underlying ECG noise while preserving temporal and spectral features.

SIGNIFICANCE

We previously proposed ECGNExT as a component of ECG analysis algorithm testing during noise conditions and reported its performance based on simulated ECG data. This work provides additional support of the performance and functionality of the ECGNExT algorithm from a study with pairs of simultaneously recorded ECGs with and without noise from human subjects.

摘要

目的

本研究旨在展示心电图噪声提取工具(ECGNExT)的性能,该工具可提供与由运动伪影和其他来源产生的心电图固有噪声无显著差异的心电图噪声估计值。此外,本文详述了ECGNExT在比较两种QRS检测算法的算法评估背景下的应用。

方法

收集并分析了来自29名参与者在五种不同且相互独立的运动条件下同时记录的140对干净心电图和受运动诱发噪声干扰的心电图。使用ECGNExT获得受噪声干扰记录的心电图的噪声成分估计值,然后将其添加到干净心电图中,得到带噪声的估计心电图。计算记录的带噪声心电图与估计的带噪声心电图之间的均方根误差(RMSE)用于时间比较,并计算信号的频段功率用于频谱比较。

结果

t检验显示平均RMSE<150微伏,p值<0.001且α = 0.01,等效性检验表明两种心电图的频段功率在α = 0.01时具有统计学等效性。

结论

ECGNExT能够可靠地估计潜在的心电图噪声,同时保留时间和频谱特征。

意义

我们之前提出将ECGNExT作为噪声条件下心电图分析算法测试的一个组成部分,并基于模拟心电图数据报告了其性能。这项研究通过对同时记录的有噪声和无噪声的人体心电图对进行研究,为ECGNExT算法的性能和功能提供了额外支持。

相似文献

1
Clinical Evaluation of the ECG Noise Extraction Tool as a Component of ECG Analysis Algorithms Evaluation.
IEEE Trans Biomed Eng. 2025 Jul;72(7):2062-2071. doi: 10.1109/TBME.2024.3386493.
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
3
Technological aids for the rehabilitation of memory and executive functioning in children and adolescents with acquired brain injury.
Cochrane Database Syst Rev. 2016 Jul 1;7(7):CD011020. doi: 10.1002/14651858.CD011020.pub2.
4
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
6
7
Physical exercise training interventions for children and young adults during and after treatment for childhood cancer.
Cochrane Database Syst Rev. 2016 Mar 31;3(3):CD008796. doi: 10.1002/14651858.CD008796.pub3.
8
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.

本文引用的文献

1
Utility of a Handheld, Single-Lead ECG Device for Diagnosis of Cardiac Arrhythmias.
J Am Coll Cardiol. 2023 Jun 13;81(23):2292-2294. doi: 10.1016/j.jacc.2023.03.428.
2
Comparative study of a single lead ECG in a wearable device.
J Electrocardiol. 2022 Sep-Oct;74:88-93. doi: 10.1016/j.jelectrocard.2022.08.004. Epub 2022 Aug 27.
3
Flexible Non-contact Electrodes for Wearable Biosensors System on Electrocardiogram Monitoring in Motion.
Front Neurosci. 2022 Jun 7;16:900146. doi: 10.3389/fnins.2022.900146. eCollection 2022.
4
Accuracy and usability of single-lead ECG from smartphones - A clinical study.
Indian Pacing Electrophysiol J. 2019 Jul-Aug;19(4):145-149. doi: 10.1016/j.ipej.2019.02.006. Epub 2019 Feb 20.
5
6
A method to extract realistic artifacts from electrocardiogram recordings for robust algorithm testing.
J Electrocardiol. 2018 Nov-Dec;51(6S):S56-S60. doi: 10.1016/j.jelectrocard.2018.08.023. Epub 2018 Aug 18.
7
Portable out-of-hospital electrocardiography: A review of current technologies.
J Arrhythm. 2018 Feb 23;34(2):129-138. doi: 10.1002/joa3.12035. eCollection 2018 Apr.
8
Spectro-Temporal Electrocardiogram Analysis for Noise-Robust Heart Rate and Heart Rate Variability Measurement.
IEEE J Transl Eng Health Med. 2017 Dec 4;5:1900611. doi: 10.1109/JTEHM.2017.2767603. eCollection 2017.
9
Assessing ECG signal quality indices to discriminate ECGs with artefacts from pathologically different arrhythmic ECGs.
Physiol Meas. 2016 Aug;37(8):1370-82. doi: 10.1088/0967-3334/37/8/1370. Epub 2016 Jul 25.
10
A review of methods for the signal quality assessment to improve reliability of heart rate and blood pressures derived parameters.
Med Biol Eng Comput. 2016 Jul;54(7):1025-35. doi: 10.1007/s11517-016-1453-5. Epub 2016 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验