Sattar Sadaf, Khan Shumaila, Khan Muhammad Ismail, Akhmediyarova Ainur, Mamyrbayev Orken, Kassymova Dinara, Oralbekova Dina, Alimkulova Janna
Department of Computer Science and Information Technology, The Superior University, Lahore, Pakistan.
Department of Computer Science , University of Science and Technology, Bannu, Pakistan.
Sci Rep. 2025 Jul 22;15(1):26585. doi: 10.1038/s41598-025-08568-0.
Privacy and security in network communication have been enhanced via encryption and traditional anomaly detection methods are no longer effective because of their payload inspection. In this paper, we describe ET-SSL, a new approach for encrypted data anomaly detection which uses self-supervised contrastive learning to identify informative representations in flow level, statistical features like packet length; inter arrival time; flow duration and protocol metadata to Detect anomalies in encrypted network traffic without the need for labelled datasets or payload analysis. ET-SSL extends the use of SSL based traffic classification in order to improve detection performance while keeping computational complexity low through the maximization of the difference between normal and anomalous traffic. On CIC-Darknet2020, ISCX VPN (nonVPN), and UNSW-NB15 datasets, ET-SSL achieves 96.8 percent accuracy, 92.7 percent true positive rate (TPR), 1.2 percent false positive rate (FPR), and can do real time anomaly detection with 15 ms to 25 ms latency and speeds up to 10 Gbps processing which makes it suitable for high speed and resource constrained environments. Compared with existing methods, ET-SSL does not rely on labeled data, scales better, and detects zero day attack in dynamic network environment more effectively, serving as a paradigm for private and energy efficient anomaly detection in encrypted traffic.
网络通信中的隐私和安全性已通过加密得到增强,传统的异常检测方法由于其对有效载荷的检查而不再有效。在本文中,我们描述了ET-SSL,一种用于加密数据异常检测的新方法,它使用自监督对比学习来识别流级别中的信息表示、诸如数据包长度、到达间隔时间、流持续时间和协议元数据等统计特征,以检测加密网络流量中的异常,而无需标记数据集或有效载荷分析。ET-SSL扩展了基于SSL的流量分类的用途,以提高检测性能,同时通过最大化正常流量和异常流量之间的差异来保持较低的计算复杂度。在CIC-Darknet2020、ISCX VPN(非VPN)和UNSW-NB15数据集上,ET-SSL实现了96.8%的准确率、92.7%的真阳性率(TPR)、1.2%的假阳性率(FPR),并且能够以15毫秒至25毫秒的延迟进行实时异常检测,处理速度高达10 Gbps,这使其适用于高速和资源受限的环境。与现有方法相比,ET-SSL不依赖标记数据,扩展性更好,并且能在动态网络环境中更有效地检测零日攻击,成为加密流量中隐私和节能异常检测的范例。