将常规血液检测轨迹建模为脊髓损伤预后的动态生物标志物。
Modeling trajectories of routine blood tests as dynamic biomarkers for outcome in spinal cord injury.
作者信息
Mussavi Rizi Marzieh, Fernández Daniel, Kramer John L K, Saigal Rajiv, DiGiorgio Anthony M, Beattie Michael S, Ferguson Adam R, Kyritsis Nikos, Torres-Espín Abel
机构信息
School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada.
Department of Statistics and Operations Research (DEIO), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Barcelona, Spain.
出版信息
NPJ Digit Med. 2025 Jul 22;8(1):470. doi: 10.1038/s41746-025-01782-0.
Routinely collected blood tests can reflect underlying pathophysiological processes. We demonstrate that the dynamics of routinely collected blood tests hold prediction validity in acute Spinal Cord Injury (SCI). Using MIMIC data (n = 2615) for modeling and TRACK-SCI study data (n = 137) for validation, we identified multiple trajectories for common blood markers. We developed machine learning models for the dynamic prediction of in-hospital mortality, SCI occurrence in spine trauma patients, and SCI severity (motor complete vs. incomplete). The in-hospital mortality model achieved an out-of-train ROC-AUC of 0.79 [0.77-0.81] day one post-injury, improving to 0.89 [0.88-0.89] by day 21. For detecting the presence of SCI after spine trauma, the highest ROC-AUC was 0.71 [0.69-0.72] achieved by day 21. By day seven, the ROC-AUC for SCI severity was 0.81 [0.77-0.85]. Our full models outperformed the severity score SAPS II following seven days of hospitalization.
常规采集的血液检测可以反映潜在的病理生理过程。我们证明,常规采集的血液检测动态结果在急性脊髓损伤(SCI)中具有预测效度。利用多机构重症医学数据库(MIMIC)数据(n = 2615)进行建模,并使用脊髓损伤治疗和康复临床试验(TRACK-SCI)研究数据(n = 137)进行验证,我们确定了常见血液标志物的多种变化轨迹。我们开发了机器学习模型,用于动态预测住院死亡率、脊柱创伤患者中SCI的发生情况以及SCI严重程度(运动完全性损伤与不完全性损伤)。住院死亡率模型在伤后第1天的训练外受试者工作特征曲线下面积(ROC-AUC)为0.79[0.77 - 0.81],到第21天时提高到0.89[0.88 - 0.89]。对于检测脊柱创伤后SCI的存在情况,到第21天时达到的最高ROC-AUC为0.71[0.69 - 0.72]。到第7天时,SCI严重程度的ROC-AUC为0.81[0.77 - 0.85]。我们的完整模型在住院7天后的表现优于严重程度评分系统简化急性生理学评分(SAPS II)。
相似文献
Clin Orthop Relat Res. 2024-9-1
Clin Neurol Neurosurg. 2024-8
本文引用的文献
Sci Data. 2023-1-3
Nat Rev Neurol. 2022-3