Wang Lin, Han Yuxiu, Qiao Yu, Yan Tao, Qi Zhi, Zhang Wei, Xin Ling, Yu Mingjing, Chen Zhili
Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
Department of Neurology, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
Curr Med Chem. 2025 Jul 21. doi: 10.2174/0109298673356904250628182630.
Atherosclerosis (AS) is prevalent among the elderly population and poses a significant global health burden. However, the precise underlying mechanisms linking aging and mitochondrial dysfunction in AS remain unclear.
Through comprehensive utilization of databases including the Gene Expression Omnibus (GEO), MitoCarta, Molecular Signatures Database (MSigDB), and Human Aging Genomic Resources (HAGR), we employed various bioinformatics methods to explore the possible function of EF-hand domain family member D1 (EFHD1). This included the functional enrichment analysis, immune cell infiltration, and the lncRNA-miRNA-EFHD1 network. The validity of EFHD1 was confirmed using additional datasets and through Receiver Operating Characteristic (ROC) curve evaluation. Lastly, in vitro experiments were conducted using THP-1 cells treated with oxidized low-density lipoprotein (ox-LDL) to validate the expression and function of EFHD1 through Western Blot and real-time quantitative PCR analyses. Additionally, in vivo experiments were performed on ApoE-/- mice exhibiting atherosclerotic phenotypes, utilizing immunofluorescence staining.
Totally seven genes associated with aging and mitochondrial function (ALDH3A2, UCP1, BCL2, EFHD1, AHCYL1, HTRA2, and ALDH9A1) were discovered in AS, with EFHD1 identified as the principal hub gene. Immune infiltration analysis indicated that EFHD1 was negatively associated with myeloid suppressor cells (MDSC), activated B cells, and natural killer cells. An evident decline in EFHD1 was noted in unstable or advanced plaques compared to stable or early plaques, accompanied by significant area under the ROC curve (AUC) values of 0.917 (GSE100927) and 0.933 (GSE41571). Moreover, we recorded a reduction in EFHD1 expression in AS tissues and macrophages treated with ox-LDL. Following the silencing of EFHD1, TNF-α and IL-1β decreased, while ALODA, PKM2, MMP-9, JAK2, and STAT3 levels were upregulated. Furthermore, levels of ATP and reactive oxygen species (ROS) were diminished, while calcium ions and mitochondria levels remained unchanged.
To date, the common pathogenic genes associated with aging and mitochondrial dysfunction in atherosclerotic disease have been scarcely investigated. Using bioinformatics approaches, we identified seven hub genes (ALDH3A2, UCP1, BCL2, EFHD1, AHCYL1, HTRA2, and ALDH9A1) related to mitochondrial function and aging. Among these, EFHD1 was determined as the final hub gene. As a calcium sensor, EFHD1 plays a pivotal role in regulating mitochondrial metabolism and has been implicated in the prognosis of various tumors. Our findings demonstrated that EFHD1 knockdown decreased the levels of pro-inflammatory cytokines, such as IL-1β and TNF-α, increased JAK2 and STAT3 protein levels, and elevated MMP-9 levels, all of which may contribute to the vulnerability and progression of atherosclerotic plaques.
Our research revealed a reduction in EFHD1 expression within atherosclerotic tissues, suggesting its potential role in inflammation and mitochondrial energy metabolism as a key regulator of the calcium signaling pathway. This discovery offers possible advancements in the early diagnosis and treatment strategies for AS.
动脉粥样硬化(AS)在老年人群中普遍存在,给全球健康带来了重大负担。然而,衰老与AS中线粒体功能障碍之间的确切潜在机制仍不清楚。
通过综合利用包括基因表达综合数据库(GEO)、线粒体蛋白数据库(MitoCarta)、分子特征数据库(MSigDB)和人类衰老基因组资源(HAGR)在内的数据库,我们采用了多种生物信息学方法来探索EF手结构域家族成员D1(EFHD1)的可能功能。这包括功能富集分析、免疫细胞浸润分析以及lncRNA-miRNA-EFHD1网络分析。使用其他数据集并通过受试者工作特征(ROC)曲线评估来确认EFHD1的有效性。最后,使用经氧化低密度脂蛋白(ox-LDL)处理的THP-1细胞进行体外实验,通过蛋白质免疫印迹和实时定量PCR分析来验证EFHD1的表达和功能。此外,利用免疫荧光染色对表现出动脉粥样硬化表型的ApoE-/-小鼠进行体内实验。
在AS中总共发现了七个与衰老和线粒体功能相关的基因(醛脱氢酶3A2(ALDH3A2)、解偶联蛋白1(UCP1)、B细胞淋巴瘤2(BCL2)、EFHD1、腺嘌呤羟化酶样蛋白1(AHCYL1)、丝氨酸蛋白酶HTRA2(HTRA2)和醛脱氢酶9A1(ALDH9A1)),其中EFHD1被确定为主要的枢纽基因。免疫浸润分析表明,EFHD1与髓系抑制细胞(MDSC)、活化B细胞和自然杀伤细胞呈负相关。与稳定或早期斑块相比,不稳定或晚期斑块中EFHD1明显下降,ROC曲线下面积(AUC)值分别为0.917(GSE100927)和0.933(GSE41571)。此外,我们记录到AS组织和经ox-LDL处理的巨噬细胞中EFHD1表达降低。EFHD1沉默后,肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)水平降低,而醛缩酶A(ALODA)、丙酮酸激酶M2(PKM2)、基质金属蛋白酶9(MMP-9)、Janus激酶2(JAK2)和信号转导和转录激活因子3(STAT3)水平上调。此外,三磷酸腺苷(ATP)和活性氧(ROS)水平降低,而钙离子和线粒体水平保持不变。
迄今为止,很少有人研究与动脉粥样硬化疾病中衰老和线粒体功能障碍相关的常见致病基因。通过生物信息学方法,我们鉴定了七个与线粒体功能和衰老相关的枢纽基因(ALDH3A2、UCP1、BCL2、EFHD1、AHCYL1、HTRA2和ALDH9A1)。其中,EFHD1被确定为最终的枢纽基因。作为一种钙传感器,EFHD1在调节线粒体代谢中起关键作用,并与各种肿瘤的预后有关。我们的研究结果表明,EFHD1敲低可降低促炎细胞因子如IL-1β和TNF-α的水平,增加JAK2和STAT3蛋白水平,并提高MMP-9水平,所有这些都可能导致动脉粥样硬化斑块的易损性和进展。
我们研究发现动脉粥样硬化组织中EFHD1表达降低,表明其作为钙信号通路的关键调节因子在炎症和线粒体能量代谢中具有潜在作用。这一发现为AS的早期诊断和治疗策略提供了可能的进展。