Suppr超能文献

探索吸烟对女性冠心病风险的影响:来自美国国家健康与营养检查调查(NHANES)数据库的见解。

Exploring the impact of smoking on coronary heart disease risk in women: Insights from the NHANES database.

作者信息

Mu Yang, Xia Jun

机构信息

Goodwill Information Technology Co., Ltd., Beijing, China.

出版信息

Medicine (Baltimore). 2025 Jul 18;104(29):e43324. doi: 10.1097/MD.0000000000043324.

Abstract

Coronary heart disease (CHD) is a widespread chronic condition. Its risk factors are numerous and complex, with smoking being a key factor. Recently, CHD risk in women has notably risen, partly due to increased smoking and lifestyle changes. This highlights the critical need for gender-specific CHD research. This study aims to assess CHD risk in smoking and nonsmoking women, identifying crucial biochemical markers influencing this risk. Our goal is to develop personalized risk assessment tools for improved clinical decision-making. We analyzed data from 41,482 female National Health and Nutrition Examination Survey participants (2011-2020), focusing on blood markers. Logistic regression models for smokers and nonsmokers were developed to predict CHD risk, assessed by the area under the curve of the receiver operating characteristic curve. We also created nomograms to translate biochemical indicator measurements into CHD risk probabilities, supporting clinical decisions. Univariate analysis showed significant correlations between age, biochemical markers, and CHD risk. The logistic regression models were highly predictive, with area under the curves of smoking CHD model and nonsmoking CHD model being 0.813 (95% confidence interval: 0.788-0.837) and 0.829 (95% confidence interval: 0.811-0.847), respectively. The nomograms effectively assessed risk across patient groups, confirmed by accurate calibration curves. This study presents distinct CHD risk assessment models for smoking and nonsmoking women, along with an innovative visual risk assessment tool. These insights underscore the role of gender in CHD risk and inform future public health strategies and clinical practices.

摘要

冠心病(CHD)是一种广泛存在的慢性疾病。其风险因素众多且复杂,吸烟是关键因素。最近,女性患冠心病的风险显著上升,部分原因是吸烟增加和生活方式改变。这凸显了针对特定性别的冠心病研究的迫切需求。本研究旨在评估吸烟和不吸烟女性的冠心病风险,确定影响该风险的关键生化标志物。我们的目标是开发个性化风险评估工具,以改善临床决策。我们分析了41482名参加2011 - 2020年全国健康与营养检查调查的女性参与者的数据,重点关注血液标志物。针对吸烟者和不吸烟者建立了逻辑回归模型,以预测冠心病风险,通过受试者操作特征曲线下面积进行评估。我们还创建了列线图,将生化指标测量值转化为冠心病风险概率,以支持临床决策。单因素分析显示年龄、生化标志物与冠心病风险之间存在显著相关性。逻辑回归模型具有高度预测性,吸烟冠心病模型和不吸烟冠心病模型的曲线下面积分别为0.813(95%置信区间:0.788 - 0.837)和0.829(95%置信区间:0.811 - 0.847)。列线图有效地评估了不同患者群体的风险,校准曲线准确证实了这一点。本研究提出了针对吸烟和不吸烟女性的不同冠心病风险评估模型,以及一种创新的视觉风险评估工具。这些见解强调了性别在冠心病风险中的作用,并为未来的公共卫生策略和临床实践提供了参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验