Suppr超能文献

宽带隙硫族化物半导体

Wide Band Gap Chalcogenide Semiconductors.

作者信息

Woods-Robinson Rachel, Han Yanbing, Zhang Hanyu, Ablekim Tursun, Khan Imran, Persson Kristin A, Zakutayev Andriy

机构信息

Materials Science Center, National Renewable Energy Laboratory Golden, Colorado 80401, United States.

Applied Science and Technology Graduate Group, University of California, Berkeley, California 94720, United States.

出版信息

Chem Rev. 2020 May 13;120(9):4007-4055. doi: 10.1021/acs.chemrev.9b00600. Epub 2020 Apr 6.

Abstract

Wide band gap semiconductors are essential for today's electronic devices and energy applications because of their high optical transparency, controllable carrier concentration, and tunable electrical conductivity. The most intensively investigated wide band gap semiconductors are transparent conductive oxides (TCOs), such as tin-doped indium oxide (ITO) and amorphous In-Ga-Zn-O (IGZO), used in displays and solar cells, carbides (e.g., SiC) and nitrides (e.g., GaN) used in power electronics, and emerging halides (e.g., γ-CuI) and 2D electronic materials (e.g., graphene) used in various optoelectronic devices. Compared to these prominent materials families, chalcogen-based (Ch = S, Se, Te) wide band gap semiconductors are less heavily investigated but stand out because of their propensity for p-type doping, high mobilities, high valence band positions (i.e., low ionization potentials), and broad applications in electronic devices such as CdTe solar cells. This manuscript provides a review of wide band gap chalcogenide semiconductors. First, we outline general materials design parameters of high performing transparent semiconductors, as well as the theoretical and experimental underpinnings of the corresponding research methods. We proceed to summarize progress in wide band gap ( > 2 eV) chalcogenide materials-namely, II-VI MCh binaries, CuMCh chalcopyrites, CuMCh sulvanites, mixed-anion layered CuMCh(O,F), and 2D materials-and discuss computational predictions of potential new candidates in this family, highlighting their optical and electrical properties. We finally review applications-for example, photovoltaic and photoelectrochemical solar cells, transistors, and light emitting diodes-that employ wide band gap chalcogenides as either an active or passive layer. By examining, categorizing, and discussing prospective directions in wide band gap chalcogenides, this Review aims to inspire continued research on this emerging class of transparent semiconductors and thereby enable future innovations for optoelectronic devices.

摘要

宽带隙半导体因其高光学透明度、可控的载流子浓度和可调的电导率,对于当今的电子设备和能源应用至关重要。研究最为深入的宽带隙半导体是透明导电氧化物(TCO),如用于显示器和太阳能电池的掺锡氧化铟(ITO)和非晶铟镓锌氧化物(IGZO),用于电力电子的碳化物(如碳化硅)和氮化物(如氮化镓),以及用于各种光电器件的新兴卤化物(如γ-碘化亚铜)和二维电子材料(如石墨烯)。与这些著名的材料家族相比,硫族元素基(Ch = S、Se、Te)宽带隙半导体的研究较少,但因其易于进行p型掺杂、高迁移率、高价带位置(即低电离势)以及在诸如碲化镉太阳能电池等电子设备中的广泛应用而脱颖而出。本手稿对宽带隙硫族化物半导体进行了综述。首先,我们概述了高性能透明半导体的一般材料设计参数,以及相应研究方法的理论和实验基础。接着,我们总结了宽带隙(>2 eV)硫族化物材料的进展,即II-VI族MCh二元化合物、铜MCh黄铜矿、铜MCh硫锡铜矿、混合阴离子层状铜MCh(O,F)和二维材料,并讨论了该家族潜在新候选材料的计算预测,突出了它们的光学和电学性质。我们最后综述了将宽带隙硫族化物用作有源或无源层的应用,例如光伏和光电化学太阳能电池、晶体管和发光二极管。通过研究、分类和讨论宽带隙硫族化物的未来发展方向,本综述旨在激发对这类新兴透明半导体的持续研究,从而推动光电器件的未来创新。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验