Suppr超能文献

具有高可见光催化活性的亚甲基蓝染料的反向金/氧化锌核壳纳米结构的稳健合成。

A robust synthesis of reverse Au/ZnO core/shell nanostructures with high visible photocatalytic activity of methylene blue dye.

作者信息

Luyen Nguyen Thi, Quang Nguyen Xuan, Kim Oanh Vuong Thi, Thu Thuy Nguyen Thi, Huy Tran Quang

机构信息

Institute of Science and Technology, TNU - University of Sciences Thai Nguyen Vietnam.

University of Transport Technology Hanoi Vietnam.

出版信息

RSC Adv. 2025 Jul 21;15(32):25831-25838. doi: 10.1039/d5ra03007b.

Abstract

In this study, we report a robust electrochemical synthesis of reverse Au/ZnO core/shell nanostructures a galvanic replacement strategy, aimed at enhancing the photocatalytic degradation of methylene blue (MB) dye. ZnO nanoparticles were first electrochemically synthesized, followed by the formation of Au (core)/ZnO (shell) nanostructures. The shell formation is attributed to a galvanic interaction between ZnO and Au ions, resulting in the reduction of Au and subsequent ZnO encapsulation. The morphology, structure, optical properties, and photocatalytic activity of the resulting nanostructures were systematically characterized. The synthesized particles exhibited core/shell nanostructure with diameters of 30-50 nm, comprising Au cores (25-40 nm) and ZnO shells (5-10 nm). Under visible light irradiation, the Au/ZnO nanostructures achieved up to 98.9% MB degradation within 90 min. The enhanced photocatalytic performance is attributed to the localized surface plasmon resonance (SPR) of the Au core, which promotes efficient photo-induced electron transfer to the ZnO shell and extends light absorption into the visible range.

摘要

在本研究中,我们报道了一种通过电置换策略稳健地电化学合成反向Au/ZnO核壳纳米结构的方法,旨在增强亚甲基蓝(MB)染料的光催化降解。首先电化学合成ZnO纳米颗粒,随后形成Au(核)/ZnO(壳)纳米结构。壳的形成归因于ZnO与Au离子之间的电置换相互作用,导致Au的还原以及随后的ZnO包覆。对所得纳米结构的形貌、结构、光学性质和光催化活性进行了系统表征。合成的颗粒呈现出直径为30 - 50 nm的核壳纳米结构,由Au核(25 - 40 nm)和ZnO壳(5 - 10 nm)组成。在可见光照射下,Au/ZnO纳米结构在90分钟内实现了高达98.9%的MB降解。光催化性能的增强归因于Au核的局域表面等离子体共振(SPR),它促进了光生电子向ZnO壳的有效转移,并将光吸收扩展到可见光范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dc/12278265/dc7c532e1c2b/d5ra03007b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验