文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于3D生物打印的创新生物墨水:探索技术潜力与监管挑战。

Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges.

作者信息

Mathur Vidhi, Agarwal Prachi, Kasturi Meghana, Srinivasan Varadharajan, Seetharam Raviraja N, Vasanthan Kirthanashri S

机构信息

Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Department of Mechanical Engineering, University of Michigan, Dearborn, MI, USA.

出版信息

J Tissue Eng. 2025 Jan 20;16:20417314241308022. doi: 10.1177/20417314241308022. eCollection 2025 Jan-Dec.


DOI:10.1177/20417314241308022
PMID:39839985
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11748162/
Abstract

The field of three dimensional (3D) bioprinting has witnessed significant advancements, with bioinks playing a crucial role in enabling the fabrication of complex tissue constructs. This review explores the innovative bioinks that are currently shaping the future of 3D bioprinting, focusing on their composition, functionality, and potential for tissue engineering, drug delivery, and regenerative medicine. The development of bioinks, incorporating natural and synthetic materials, offers unprecedented opportunities for personalized medicine. However, the rapid technological progress raises regulatory challenges regarding safety, standardization, and long-term biocompatibility. This paper addresses these challenges, examining the current regulatory frameworks and the need for updated guidelines to ensure patient safety and product efficacy. By highlighting both the technological potential and regulatory hurdles, this review offers a comprehensive overview of the future landscape of bioinks in bioprinting, emphasizing the necessity for cross-disciplinary collaboration between scientists, clinicians, and regulatory bodies to achieve successful clinical applications.

摘要

三维(3D)生物打印领域取得了重大进展,生物墨水在制造复杂组织构建体中发挥着关键作用。本综述探讨了当前正在塑造3D生物打印未来的创新生物墨水,重点关注其组成、功能以及在组织工程、药物递送和再生医学方面的潜力。结合天然和合成材料的生物墨水的发展为个性化医学提供了前所未有的机会。然而,快速的技术进步带来了有关安全性、标准化和长期生物相容性的监管挑战。本文应对这些挑战,审视当前的监管框架以及更新指南的必要性,以确保患者安全和产品疗效。通过突出技术潜力和监管障碍,本综述全面概述了生物墨水在生物打印中的未来前景,强调科学家、临床医生和监管机构之间跨学科合作对于实现成功临床应用的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/dcda9de4c112/10.1177_20417314241308022-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/70e8ee309852/10.1177_20417314241308022-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/1044f82c79a1/10.1177_20417314241308022-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/bf7fdc174863/10.1177_20417314241308022-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/93b6299bf3fc/10.1177_20417314241308022-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/d86fd7b77c9c/10.1177_20417314241308022-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/dcda9de4c112/10.1177_20417314241308022-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/70e8ee309852/10.1177_20417314241308022-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/1044f82c79a1/10.1177_20417314241308022-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/bf7fdc174863/10.1177_20417314241308022-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/93b6299bf3fc/10.1177_20417314241308022-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/d86fd7b77c9c/10.1177_20417314241308022-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5af/11748162/dcda9de4c112/10.1177_20417314241308022-fig6.jpg

相似文献

[1]
Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges.

J Tissue Eng. 2025-1-20

[2]
Nanocomposite bioinks for 3D bioprinting.

Acta Biomater. 2022-10-1

[3]
Advancing bioinks for 3D bioprinting using reactive fillers: A review.

Acta Biomater. 2020-9-1

[4]
Bioinks for bioprinting using plant-derived biomaterials.

Biofabrication. 2024-8-22

[5]
Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review.

Biomed Phys Eng Express. 2024-9-25

[6]
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration.

Int J Extrem Manuf. 2025-2-1

[7]
Review on Multicomponent Hydrogel Bioinks Based on Natural Biomaterials for Bioprinting 3D Liver Tissues.

Front Bioeng Biotechnol. 2022-2-14

[8]
3D bioprinting for bile duct tissue engineering: current status and prospects.

Front Bioeng Biotechnol. 2025-4-14

[9]
Hydrogel-Based Bioinks for Coaxial and Triaxial Bioprinting: A Review of Material Properties, Printing Techniques, and Applications.

Polymers (Basel). 2025-3-28

[10]
Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.

Acta Biomater. 2021-9-15

引用本文的文献

[1]
Revolutionizing cancer care: Bioprinting prostate cancer stem cells for targeted treatments.

World J Clin Oncol. 2025-7-24

[2]
Design and Applications of Extracellular Matrix Scaffolds in Tissue Engineering and Regeneration.

Cells. 2025-7-15

[3]
Construction of organoids using bioprinting technology: a frontier exploration of cartilage repair.

J Orthop Translat. 2025-7-16

[4]
Transformative bioprinting: 4D printing and its role in the evolution of engineering and personalized medicine.

Discov Nano. 2025-7-23

[5]
Bioprinting for drug screening: A path toward reducing animal testing or redefining preclinical research?

Bioact Mater. 2025-7-15

[6]
Tissue Regeneration of Radiation-Induced Skin Damages Using Protein/Polysaccharide-Based Bioengineered Scaffolds and Adipose-Derived Stem Cells: A Review.

Int J Mol Sci. 2025-7-4

[7]
Development of a simplified and scalable hydrogel-based method for 3D cell culture.

Sci Prog. 2025

[8]
Optimizing In Vitro Skin Permeation Studies to Obtain Meaningful Data in Topical and Transdermal Drug Delivery.

AAPS PharmSciTech. 2025-5-29

[9]
3D Bioprinting: Shaping the Future of Periodontal Tissue Regeneration and Disease Management.

Cureus. 2025-4-17

[10]
The Next Frontier in Aesthetics: 3D Bioprinting for Personalized Skin Regeneration.

J Cosmet Dermatol. 2025-4

本文引用的文献

[1]
Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications.

Biomater Sci. 2024-12-17

[2]
Scaffold-mediated liver regeneration: A comprehensive exploration of current advances.

J Tissue Eng. 2024-10-13

[3]
Optimizing Printhead Design for Enhanced Temperature Control in Extrusion-Based Bioprinting.

Micromachines (Basel). 2024-7-24

[4]
Fabrication of 3D PCL/PVP scaffolds using monosodium glutamate as porogen by solvent casting/particulate leaching method for oral and maxillofacial bone tissue engineering.

Biomed Mater. 2024-8-13

[5]
Granular Biphasic Colloidal Hydrogels for 3D Bioprinting.

Adv Healthc Mater. 2024-10

[6]
Porous Functionally Graded Scaffold prepared by a single-step freeze-drying process. A bioinspired approach for wound care.

Int J Pharm. 2024-5-10

[7]
Decellularization and Their Significance for Tissue Regeneration in the Era of 3D Bioprinting.

ACS Omega. 2024-2-6

[8]
Rat liver extracellular matrix and perfusion bioreactor culture promote human amnion epithelial cell differentiation towards hepatocyte-like cells.

J Tissue Eng. 2023-12-22

[9]
Three Dimensional Bioprinting for Hepatic Tissue Engineering: From In Vitro Models to Clinical Applications.

Tissue Eng Regen Med. 2024-1

[10]
Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications.

Polymers (Basel). 2023-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索