Suppr超能文献

一种用于抗癌药物筛选的生物打印动物患者来源的乳腺癌模型。

A bioprinted animal patient-derived breast cancer model for anti-cancer drug screening.

作者信息

Mei Xuan, Uribe Estrada Maria Fernanda, Rizwan Muhammad, Lukin Izeia, Sanchez Gonzalez Begoña, Marin Canchola Jose Gerardo, Velarde Jarquín Valeria, Salazar Parraguez Ximena, Del Valle Rodríguez Francisco, Garciamendez-Mijares Carlos Ezio, Lin Zeng, Guo Jie, Wang Zhenwu, Maharjan Sushila, Orive Gorka, Zhang Yu Shrike

机构信息

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA.

Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad 45550, Pakistan.

出版信息

Mater Today Bio. 2025 Jan 3;31:101449. doi: 10.1016/j.mtbio.2025.101449. eCollection 2025 Apr.

Abstract

Animal models are commonly used for drug screening before clinical trials. However, developing these models is time-consuming, and the results obtained from these models may differ from clinical outcomes due to the differences between animals and humans. To this end, 3D bioprinting offers several advantages for drug screening, such as high reproducibility and improved throughput, in addition to the human cells that can be used to generate these models. Here, we report the development of an animal patient-derived breast cancer model for drug screening using digital light processing (DLP) bioprinting. These bioprinted models demonstrated good cytocompatibility and preserved phenotypes of the cells. DLP enabled rapid fabrication with blood vessel-like channels to replicate, to a good extent, the tumor microenvironment. Our findings suggested that the improved microenvironment, provided by vascular structures within the bioprinted models, played a crucial role in reducing the chemoresistance of drugs. In addition, the correlation of the and drug-screening results was preliminarily performed to evaluate the predictive feasibility of this bioprinted model, suggesting a potential strategy for the design of future drug-testing platforms.

摘要

动物模型常用于临床试验前的药物筛选。然而,开发这些模型耗时,且由于动物与人类之间的差异,从这些模型获得的结果可能与临床结果不同。为此,3D生物打印为药物筛选提供了几个优势,如高重现性和提高通量,此外还可使用人类细胞来生成这些模型。在此,我们报告了一种使用数字光处理(DLP)生物打印技术开发的、源自动物患者的乳腺癌药物筛选模型。这些生物打印模型表现出良好的细胞相容性,并保留了细胞的表型。DLP能够快速制造出具有血管样通道的模型,在很大程度上复制肿瘤微环境。我们的研究结果表明,生物打印模型中的血管结构所提供的改善后的微环境,在降低药物化疗耐药性方面发挥了关键作用。此外,初步进行了体外和体内药物筛选结果的相关性分析,以评估这种生物打印模型的预测可行性,这为未来药物测试平台的设计提供了一种潜在策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd36/11782996/aea0c45b9d14/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验