Suppr超能文献

倾向得分分析再探讨。

Propensity score analysis revisited.

作者信息

Hashimoto Yohei, Yasunaga Hideo

机构信息

Save Sight Institute, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.

Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan.

出版信息

Ann Clin Epidemiol. 2025 Mar 14;7(3):99-104. doi: 10.37737/ace.25012. eCollection 2025 Jul 1.

Abstract

Propensity score (PS) is the probability of the exposure being assigned, conditional on the observed baseline covariates. Many observational studies have used PS analyses to investigate the effects of exposure on outcomes. This report reviews the five steps of PS analyses: 1) calculating PS; 2) checking the overlap of PS; 3) implementing a matching or weighting method including PS matching, inverse-probability-of-treatment weighting, standardized mortality ratio weighting, matching weighting, and overlap weighting; 4) diagnosing the covariate balance; and 5) comparing the outcomes. Two groups are often compared in PS analyses; however, three-group comparisons can provide clinicians with more benefits in many situations in routine clinical practice. Thus, we describe not only two-group comparisons but also three-group comparisons by introducing a few studies that used generalized PS to compare three groups.

摘要

倾向评分(PS)是在观察到的基线协变量条件下暴露被分配的概率。许多观察性研究已使用PS分析来研究暴露对结局的影响。本报告回顾了PS分析的五个步骤:1)计算PS;2)检查PS的重叠性;3)实施匹配或加权方法,包括PS匹配、治疗逆概率加权、标准化死亡率比加权、匹配加权和重叠加权;4)诊断协变量平衡;5)比较结局。PS分析中通常比较两组;然而,在常规临床实践中的许多情况下,三组比较可为临床医生提供更多益处。因此,我们不仅描述两组比较,还通过介绍一些使用广义PS比较三组的研究来描述三组比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/12279407/151f0b9fe3f6/ace25012f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验