文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用现场和基因组流行病学方法调查加拿大不列颠哥伦比亚省家禽中高致病性甲型禽流感(H5N1)的传播网络(2022 - 2023年)

Applying Field and Genomic Epidemiology Methods to Investigate Transmission Networks of Highly Pathogenic Avian Influenza A (H5N1) in Domestic Poultry in British Columbia, Canada (2022-2023).

作者信息

Howden Krista, French Shannon K, Racicot Manon, Signore Anthony V, Best Caitlyn, Perrey Jacklyn, Bourque Troy, Berhane Yohannes

机构信息

Canadian Food Inspection Agency, Calgary, Alberta T2E 9B2, Canada.

Canadian Food Inspection Agency, Guelph, Ontario N1G 4S9, Canada.

出版信息

Transbound Emerg Dis. 2025 Jul 15;2025:4099285. doi: 10.1155/tbed/4099285. eCollection 2025.


DOI:10.1155/tbed/4099285
PMID:40697881
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12283179/
Abstract

Highly pathogenic avian influenza (HPAI) virus A (H5N1) was first detected in North America in 2021. Ongoing spillover events from wild to domestic birds and subsequent transmission between domestic birds resulted in Canada's largest recorded epidemic of HPAI. Between December 2021 and April 2024, 422 A (H5N1) outbreaks in domestic birds were confirmed in Canada. Of these, 158 (37%) occurred in British Columbia (BC). This study integrates field and genomic epidemiology (GE) results to investigate the potential for lateral or local spread between infected poultry farms in BC. Five genetically distinct viral clusters were identified during this period. Among the 31 noncommercial premises, 27 (87.1%) were classified as independent introductions, while four premises (12.9%) were attributed to local spread within 10 km of a phylogenetically connected infected premises (IP). No lateral spread events were identified among noncommercial premises. All infected noncommercial premises housed birds with outdoor access, emphasizing their susceptibility to wild bird exposure. Of the 127 infected commercial poultry premises, 21 (16.5%) were classified as independent introductions, 82 (64.6%) as local spread, 18 (14.2%) with potential for lateral spread, five (3.9%) with potential for both local and/or lateral spread, and one (0.8%) for which sequencing was unavailable. Local spread emerged as a prominent feature, with most IP in proximity to one another having genetically similar viruses. Results suggest that proximity (<200 m) to an IP was a more reliable predictor of future infection status than contact with an IP. These findings underscore the critical value of combining field and GE to understand outbreak dynamics comprehensively. This integrative approach improves resource allocation, informs targeted containment strategies, and supports the need for effective biosecurity measures to mitigate future risks, particularly in densely populated poultry production regions. Robust interventions are needed to address both independent introductions and secondary spread pathways.

摘要

高致病性禽流感(HPAI)病毒A(H5N1)于2021年首次在北美被发现。从野生鸟类到家养鸟类持续发生的溢出事件以及随后家养鸟类之间的传播,导致了加拿大有记录以来最大规模的HPAI疫情。在2021年12月至2024年4月期间,加拿大确认在家养鸟类中发生了422起A(H5N1)疫情。其中,158起(37%)发生在不列颠哥伦比亚省(BC)。本研究整合了现场和基因组流行病学(GE)结果,以调查BC省受感染家禽养殖场之间横向或局部传播的可能性。在此期间识别出了五个基因不同的病毒簇。在31个非商业场所中,27个(87.1%)被归类为独立引入,而四个场所(12.9%)归因于在系统发育相关的受感染场所(IP)10公里范围内的局部传播。在非商业场所中未识别出横向传播事件。所有受感染的非商业场所都饲养有可接触户外的鸟类,这突出了它们对野生鸟类暴露的易感性。在127个受感染的商业家禽场所中,21个(16.5%)被归类为独立引入,82个(64.6%)为局部传播,18个(14.2%)有横向传播可能性,5个(3.9%)有局部和/或横向传播可能性,1个(0.8%)无法进行测序。局部传播成为一个突出特征,大多数彼此相邻的IP具有基因相似的病毒。结果表明,与IP的接近程度(<200米)比与IP的接触是未来感染状况更可靠的预测指标。这些发现强调了结合现场和GE全面了解疫情动态的关键价值。这种综合方法改善了资源分配,为有针对性的控制策略提供了信息,并支持采取有效的生物安全措施以降低未来风险的必要性,特别是在人口密集的家禽生产地区。需要强有力的干预措施来应对独立引入和二次传播途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/3ef483e42f61/TBED2025-4099285.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/db1cd3b87c7c/TBED2025-4099285.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/78f6920ddf2d/TBED2025-4099285.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/a7e64095f90c/TBED2025-4099285.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/fc79e81deb29/TBED2025-4099285.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/836166290a4b/TBED2025-4099285.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/5adcff2b04b6/TBED2025-4099285.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/052ba1681d83/TBED2025-4099285.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/f97acce9c489/TBED2025-4099285.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/2f3c1c649919/TBED2025-4099285.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/3ef483e42f61/TBED2025-4099285.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/db1cd3b87c7c/TBED2025-4099285.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/78f6920ddf2d/TBED2025-4099285.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/a7e64095f90c/TBED2025-4099285.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/fc79e81deb29/TBED2025-4099285.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/836166290a4b/TBED2025-4099285.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/5adcff2b04b6/TBED2025-4099285.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/052ba1681d83/TBED2025-4099285.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/f97acce9c489/TBED2025-4099285.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/2f3c1c649919/TBED2025-4099285.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/12283179/3ef483e42f61/TBED2025-4099285.010.jpg

相似文献

[1]
Applying Field and Genomic Epidemiology Methods to Investigate Transmission Networks of Highly Pathogenic Avian Influenza A (H5N1) in Domestic Poultry in British Columbia, Canada (2022-2023).

Transbound Emerg Dis. 2025-7-15

[2]
Comparative pathogenicity of three A(H5N1) clade 2.3.4.4b HPAI viruses in blue-winged teal and transmission to domestic poultry.

mSphere. 2025-6-25

[3]
Dynamics of a Panzootic: Genomic Insights, Host Range, and Epidemiology of the Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b in the United States.

Viruses. 2025-2-25

[4]
Highly pathogenic avian influenza (H5N1): pathways of exposure at the animal-human interface, a systematic review.

PLoS One. 2011-1-24

[5]
A Systematic Review of the Comparative Epidemiology of Avian and Human Influenza A H5N1 and H7N9 - Lessons and Unanswered Questions.

Transbound Emerg Dis. 2016-12

[6]
Descriptive Epidemiology and Phylodynamics of the "First Wave" of an Outbreak of Highly Pathogenic Avian Influenza (H5N1 Clade 2.3.4.4b) in British Columbia and the Yukon, Canada, April to September 2022.

Transbound Emerg Dis. 2024-2-29

[7]
Avian influenza A (H5N1) virus in dairy cattle: origin, evolution, and cross-species transmission.

mBio. 2024-12-11

[8]
The Impact of Highly Pathogenic Avian Influenza H5N1 in the United States: A Scoping Review of Past Detections and Present Outbreaks.

Viruses. 2025-2-24

[9]
India's public health risk from the emerging zoonotic bird flu (H5N1) transmission from backyard flock: a call for people-centric actions for improved sustainable development goals.

Trop Anim Health Prod. 2025-6-30

[10]
Environmental Suitability of Kazakhstan to Highly Pathogenic Avian Influenza Using Data on Eurasian Outbreaks, 2020-2024.

Viruses. 2025-4-16

本文引用的文献

[1]
Descriptive Epidemiology and Phylodynamics of the "First Wave" of an Outbreak of Highly Pathogenic Avian Influenza (H5N1 Clade 2.3.4.4b) in British Columbia and the Yukon, Canada, April to September 2022.

Transbound Emerg Dis. 2024-2-29

[2]
Descriptive epidemiology and phylogenetic analysis of highly pathogenic avian influenza H5N1 clade 2.3.4.4b in British Columbia (B.C.) and the Yukon, Canada, September 2022 to June 2023.

Emerg Microbes Infect. 2024-12

[3]
Avian influenza viruses in wild birds in Canada following incursions of highly pathogenic H5N1 virus from Eurasia in 2021-2022.

mBio. 2024-8-14

[4]
Fitness Determinants of Influenza A Viruses.

Viruses. 2023-9-20

[5]
Investigation of risk factors for introduction of highly pathogenic avian influenza H5N1 infection among commercial turkey operations in the United States, 2022: a case-control study.

Front Vet Sci. 2023-8-30

[6]
Investigation of risk factors for introduction of highly pathogenic avian influenza H5N1 virus onto table egg farms in the United States, 2022: a case-control study.

Front Vet Sci. 2023-7-25

[7]
The Role of Airborne Particles in the Epidemiology of Clade 2.3.4.4b H5N1 High Pathogenicity Avian Influenza Virus in Commercial Poultry Production Units.

Viruses. 2023-4-19

[8]
Combined Phylogeographic Analyses and Epidemiologic Contact Tracing to Characterize Atypically Pathogenic Avian Influenza (H3N1) Epidemic, Belgium, 2019.

Emerg Infect Dis. 2023-2

[9]
A threat from both sides: Multiple introductions of genetically distinct H5 HPAI viruses into Canada via both East Asia-Australasia/Pacific and Atlantic flyways.

Virus Evol. 2022-8-25

[10]
Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021.

Sci Rep. 2022-7-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索