Suppr超能文献

基于机器学习的高性能锌离子电池MnO阴极放电容量预测

Machine learning based prediction of MnO cathode discharge capacity for high-performance zinc-ion batteries.

作者信息

Chowdhury Nure Alam, Henderson Leaford Nathan Adebayo, Yaser Samin, Oyeku Olusola Pelumi, Tresa Maydenee Maydur, Kundu Chandra, Thomas Jayan

机构信息

Nanoscience and Technology Center, University of Central Florida, Orlando, FL 32826, USA.

Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA.

出版信息

Phys Chem Chem Phys. 2025 Aug 7;27(31):16636-16643. doi: 10.1039/d5cp01218j.

Abstract

Zinc-ion batteries (ZIBs) are considered as a cheaper, non-toxic and safer alternative to lithium-ion batteries (LIBs). Manganese dioxide (MnO) is one of the most viable cathode materials for aqueous electrolyte based ZIBs. The addition of different dopants in the MnO cathode material can significantly change its physical properties and electrochemical performance in ZIBs. In this study, we collected about 603 papers from which we selected 57 ZIB published papers related to doped MnO as a cathode material. The dataset consists of a total of eleven features (ten input features and one target) in which six features are related to battery properties and five features are related to the elemental properties of the dopants. The Pearson correlation plot is considered to investigate the correlation between different features, and it is observed that the electronegativity and first-ionization energy of the dopant have a positive relation with discharge capacity (DC). Both classification and regression treatment are applied to our dataset using different machine learning models such as XGBoost, random forest (RF), and -nearest Neighbors. The RF model can classify DC with an accuracy of 0.72 into three predefined grades. In the regression analysis, the XGBoost model can predict DC with an value of 0.92. Finally, the findings of this study can be utilized to predict the performance of doped MnO before synthesizing it in the laboratory.

摘要

锌离子电池(ZIBs)被认为是锂离子电池(LIBs)更便宜、无毒且更安全的替代品。二氧化锰(MnO)是基于水性电解质的锌离子电池最可行的正极材料之一。在MnO正极材料中添加不同的掺杂剂可以显著改变其物理性质以及在锌离子电池中的电化学性能。在本研究中,我们收集了约603篇论文,从中筛选出57篇与掺杂MnO作为正极材料相关的锌离子电池已发表论文。该数据集共有11个特征(10个输入特征和1个目标特征),其中6个特征与电池性能相关,5个特征与掺杂剂的元素性质相关。通过皮尔逊相关图来研究不同特征之间的相关性,结果发现掺杂剂的电负性和第一电离能与放电容量(DC)呈正相关。我们使用不同的机器学习模型,如XGBoost、随机森林(RF)和K近邻算法,对我们的数据集进行分类和回归处理。RF模型能够以0.72的准确率将放电容量分为三个预定义等级。在回归分析中,XGBoost模型能够以0.92的R值预测放电容量。最后,本研究的结果可用于在实验室合成掺杂MnO之前预测其性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验