Arumugam Jeeva Rajkumar, Lemaire Edward D, Olleac Ramiro, Cheung Kevin, Tu Albert, Baddour Natalie
Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M2, Canada.
Methods Protoc. 2025 Jul 3;8(4):71. doi: 10.3390/mps8040071.
This research addresses critical challenges in clinical gait analysis by developing an automated video quality assessment framework to support Edinburgh Visual Gait Score (EVGS) scoring. The proposed methodology uses the MoveNet Lightning pose estimation model to extract body keypoints from video frames, enabling detection of multiple persons, tracking the person of interest, assessment of plane orientation, identification of overlapping individuals, detection of zoom artifacts, and evaluation of video resolution. These components are integrated into a unified quality classification system using a random forest classifier. The framework achieved high performance across key metrics, with 96% accuracy in detecting multiple persons, 95% in assessing overlaps, and 92% in identifying zoom events, culminating in an overall video quality categorization accuracy of 95%. This performance not only facilitates the automated selection of videos suitable for analysis but also provides specific video improvement suggestions when quality standards are not met. Consequently, the proposed system has the potential to streamline gait analysis workflows, reduce reliance on manual quality checks in clinical practice, and enable automated EVGS scoring by ensuring appropriate video quality as input to the gait scoring system.
本研究通过开发一个自动化视频质量评估框架来支持爱丁堡视觉步态评分(EVGS),从而解决临床步态分析中的关键挑战。所提出的方法使用MoveNet Lightning姿态估计模型从视频帧中提取身体关键点,能够检测多个人、跟踪感兴趣的人、评估平面方向、识别重叠个体、检测缩放伪影以及评估视频分辨率。这些组件使用随机森林分类器集成到一个统一的质量分类系统中。该框架在关键指标上取得了高性能,检测多个人的准确率为96%,评估重叠的准确率为95%,识别缩放事件的准确率为92%,最终视频质量分类的总体准确率为95%。这种性能不仅有助于自动选择适合分析的视频,还能在不符合质量标准时提供具体的视频改进建议。因此,所提出的系统有可能简化步态分析工作流程,减少临床实践中对人工质量检查的依赖,并通过确保作为步态评分系统输入的视频质量合适来实现自动化的EVGS评分。