Li Aiqing, Sun Jun, Sheng Denghai, Gu Shengen, Zhan Mengying, Liu Xiaoli, Chen Hong
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
ACS Appl Bio Mater. 2025 Aug 18;8(8):7061-7079. doi: 10.1021/acsabm.5c00780. Epub 2025 Jul 23.
Blood-contacting materials are frequently challenged by endothelial damage, thrombosis, and intimal hyperplasia, significantly limiting their long-term efficacy. To mitigate these issues, a composite coating was developed by integrating nitric oxide (NO)-releasing CuBTTri with hyaluronic acid (HA) on a polydimethylsiloxane surface. To combine the cell adhesion property of polydopamine coatings, the hydrophilic and antifouling properties of HA, and the ability of CuBTTri to catalyze NO release, a polydopamine-polyethylenimine layer was deposited to enhance surface adhesion, followed by the covalent attachment of CuBTTri-loaded hyaluronic acid, forming hyaluronic acid-polydopamine composite coatings (PHMn). Among these, the PHM2 coating (200 μg/mL CuBTTri, obtained by dispersing 1 mg CuBTTri in 5 mL HA solution) demonstrated superior performance, efficiently catalyzing NO release from endogenous donors. This process selectively inhibited smooth muscle cell (HUVSMC) adhesion and proliferation while fostering endothelial cell (HUVEC) growth, achieving a HUVEC-to-HUVSMC density ratio of approximately 1.9. Furthermore, HUVECs on PHM2 exhibited high viability (∼97%) and increased CD31 expression, reflecting favorable endothelialization. The coating also displayed remarkable hemocompatibility, as evidenced by extended plasma recalcification time and a reduced hemolysis rate. The NO-releasing capability of CuBTTri, in conjunction with the hydrophilic and antifouling characteristics of hyaluronic acid, constitutes an effective strategy for fabricating blood-contacting materials with selective endothelialization and sustained hemocompatibility.
与血液接触的材料经常面临内皮损伤、血栓形成和内膜增生的挑战,这显著限制了它们的长期疗效。为了缓解这些问题,通过在聚二甲基硅氧烷表面将释放一氧化氮(NO)的CuBTTri与透明质酸(HA)结合,开发了一种复合涂层。为了结合聚多巴胺涂层的细胞粘附特性、HA的亲水性和抗污性能以及CuBTTri催化NO释放的能力,沉积了一层聚多巴胺-聚乙烯亚胺层以增强表面粘附力,随后通过共价连接负载CuBTTri的透明质酸,形成透明质酸-聚多巴胺复合涂层(PHMn)。其中,PHM2涂层(200μg/mL CuBTTri,通过将1mg CuBTTri分散在5mL HA溶液中获得)表现出优异的性能,能够有效地催化内源性供体释放NO。这一过程选择性地抑制了平滑肌细胞(HUVSMC)的粘附和增殖,同时促进了内皮细胞(HUVEC)的生长,实现了HUVEC与HUVSMC密度比约为1.9。此外,PHM2上的HUVEC表现出高活力(约97%)和CD31表达增加,反映出良好的内皮化。该涂层还表现出显著的血液相容性,血浆复钙时间延长和溶血率降低证明了这一点。CuBTTri的NO释放能力与透明质酸的亲水性和抗污特性相结合,构成了一种制造具有选择性内皮化和持续血液相容性的与血液接触材料的有效策略。