Suppr超能文献

通过机器学习揭示湿地策略在中国降低抗生素风险中的作用

Unveiling the Role of Wetland Strategies in Antibiotic Risk Reduction across China by Machine Learning.

作者信息

Chen Lei, Shi Junxiang, Wu Danni, Zhu Ying, Adams Jonathan M, Wu Jichun, Chen Xiaohui, Guo Hongyan

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.

Geomodelling and AI Centre, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.

出版信息

Environ Sci Technol. 2025 Aug 5;59(30):15865-15876. doi: 10.1021/acs.est.5c02866. Epub 2025 Jul 23.

Abstract

Pervasive antibiotic pollution in water environments has emerged as a serious threat to global ecosystem functions and public health. While wetland expansion─including protection, restoration, and construction, is widely promoted for sustainable water quality improvement, its effectiveness in mitigating antibiotic pollution remains poorly understood. Here, we develop a machine learning model based on a compiled data set of 337 experimental observations to quantify antibiotic removal and map risk distribution in wetlands across 2,833 counties/districts in mainland China. Between 2010 and 2020, the wetland area across China expanded by 34.7%, yet antibiotic removal improved by only 0.1%, failing to meaningfully reduce the risk. We find that antibiotic removal in wetlands is primarily constrained by input magnitudes rather than the wetland area. To address this, we proposed a multistage wetland management strategy to enhance antibiotic removal by 27.6% in 2020 and high-risk area reduction by 90.6% under optimal policies by 2035. Furthermore, we further identified the importance of wetland management strategies through an interpretable model. Our findings provide novel wetland strategy insights for policymakers and highlight the fact that wetland expansion without targeted management is insufficient for controlling antibiotic pollution, although it is an important cornerstone characteristic for water quality improvement.

摘要

水环境中普遍存在的抗生素污染已成为对全球生态系统功能和公众健康的严重威胁。虽然湿地扩张(包括保护、恢复和建设)被广泛推广用于可持续改善水质,但其在减轻抗生素污染方面的有效性仍知之甚少。在此,我们基于337个实验观测的汇编数据集开发了一个机器学习模型,以量化抗生素去除情况并绘制中国大陆2833个县/区湿地的风险分布。2010年至2020年间,中国湿地面积扩大了34.7%,但抗生素去除率仅提高了0.1%,未能有效降低风险。我们发现,湿地中的抗生素去除主要受输入量而非湿地面积的限制。为解决这一问题,我们提出了一种多阶段湿地管理策略,到2020年可将抗生素去除率提高27.6%,到2035年在最优政策下将高风险区域减少90.6%。此外,我们通过一个可解释模型进一步确定了湿地管理策略的重要性。我们的研究结果为政策制定者提供了新颖的湿地策略见解,并强调了一个事实,即尽管湿地扩张是改善水质的重要基石特征,但没有针对性管理的湿地扩张不足以控制抗生素污染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63db/12329719/d9d890c5a51e/es5c02866_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验