Li Wenyuan, Chen Yuling, Feng Xiaolin, Chen Yanguang, Hu Xuanchun, Yang Caibai, Ye Yong
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
Guangdong Guangmu Animal Health Products Co. Ltd, Qingyuan 513042, People's Republic of China.
Nanotechnology. 2025 Aug 11;36(32). doi: 10.1088/1361-6528/adf340.
Photocatalytic degradation is increasingly recognized as a highly effective approach for the removal of organic pollutants and pathogenic microorganisms from wastewater. Nevertheless, conventional unit catalysts often fall short of practical requirements, primarily due to their limited efficiency in photoinduced electron-hole transfer and the scarcity of active sites. In this work, three-dimensional porous material pg-CNwas synthesized utilizing the hard template method, employing dendritic mesoporous silica as the templating agent. And the nanoparticles of BiVO/pg-CNdirect-heterojunction composite (BCN) were successfully constructed by using pg-CNas growth template and BiVOdirected growth. The heterogeneous surface morphology of pg-CNmarkedly enhances its capacity for visible light absorption and increases the availability of catalytic active sites. BCN demonstrates the ability to degrade 98% of Rhodamine B under simulated solar irradiation within 120 min and effectively inactivates 2 × 10cfu mlofunder similar conditions within 60 min. Notably, after five cycles of use, the structural integrity and functional properties of the material remain largely unaltered. The superior photocatalytic degradation and photodynamic sterilization performance of BCN can be primarily attributed to its narrower band gap width of 2.34 eV, reduced electrochemical impedance, and enhanced separation and transfer rate of photogenerated carriers. Collectively, these properties facilitate the effective degradation of organic pollutants and the robust inactivation of bacteria by BCN under visible light irradiation. The successful implementation of this research offers a theoretical foundation and experimental insights for the future development of advanced-type photocatalysts.
光催化降解越来越被认为是一种从废水中去除有机污染物和致病微生物的高效方法。然而,传统的单元催化剂往往达不到实际要求,主要是由于其在光生电子-空穴转移方面效率有限以及活性位点稀缺。在这项工作中,利用硬模板法合成了三维多孔材料pg-CN,采用树枝状介孔二氧化硅作为模板剂。并且以pg-CN为生长模板,通过BiVO定向生长成功构建了BiVO/pg-CN直接异质结复合材料(BCN)的纳米颗粒。pg-CN的异质表面形态显著增强了其对可见光的吸收能力,并增加了催化活性位点的可用性。BCN在模拟太阳辐射下120分钟内能够降解98%的罗丹明B,并且在类似条件下60分钟内能够有效灭活2×10cfu/ml的[此处原文缺失具体细菌名称]。值得注意的是,经过五次使用循环后,材料的结构完整性和功能特性基本保持不变。BCN优异的光催化降解和光动力杀菌性能主要归因于其2.34 eV的较窄带隙宽度、降低的电化学阻抗以及光生载流子分离和转移速率的提高。总体而言,这些特性促进了BCN在可见光照射下对有机污染物的有效降解和对细菌的强力灭活。这项研究的成功实施为先进型光催化剂的未来发展提供了理论基础和实验见解。