Thapa Gobinda, Gurung Saru, Han So-Ra, Oh Tae-Jin
Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea.
Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, Sun Moon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea.
Int J Biol Macromol. 2025 Sep;321(Pt 2):146195. doi: 10.1016/j.ijbiomac.2025.146195. Epub 2025 Jul 21.
Plastic pollution poses a significant threat to the Arctic ecosystem, primarily due to long-distance transport and localized anthropogenic activities. This study examines the plastic-degrading bacteria from the Arctic, with a focus on Pseudomonas sp. PAMC26590, which degrades mono(2-hydroxyethyl) terephthalate (MHET). Genomic analysis of this strain revealed a putative MHET hydrolase gene involved in MHET degradation, as supported by in-silico methods. The strain has a 6.2 Mb circular chromosome with 60 % GC content, 5287 coding genes, 64 tRNAs, and 16 rRNAs. Under the optimized conditions (20 °C, pH 7.0, mineral salt medium), Pseudomonas degraded 58.33 % of MHET (83 ng/mL) within 7 days, demonstrating cold-adapted degradation capability. Thus, we present our discovery of the Arctic strain Pseudomonas sp. PAMC26590 has shown the ability to degrade MHET at low temperatures for the first time. Furthermore, recombinant MHET hydrolase showed 79 % biodegradation activity at pH 8.0 and 25 °C. Molecular docking revealed a strong binding affinity (ΔG = -6.67 kcal/mol) mediated by the catalytic residues Ser199, His457, and Asp416, supported by stabilizing van der Waals interactions, which suggests a biologically plausible binding mode. Molecular dynamics (MD) simulations and MM-GBSA calculations confirmed structural stability and energetically favorable binding (ΔGbind = -65.42 kcal/mol), reinforcing the ligand's potential role in the catalytic mechanism of MHET hydrolase.
塑料污染对北极生态系统构成了重大威胁,这主要归因于长距离运输和局部人为活动。本研究对来自北极的塑料降解细菌进行了考察,重点关注降解单(2-羟乙基)对苯二甲酸酯(MHET)的假单胞菌属菌株PAMC26590。该菌株的基因组分析揭示了一个与MHET降解相关的假定MHET水解酶基因,这得到了计算机模拟方法的支持。该菌株有一条6.2 Mb的环状染色体,GC含量为60%,有5287个编码基因、64个tRNA和16个rRNA。在优化条件(20℃、pH 7.0、无机盐培养基)下,假单胞菌在7天内降解了58.33%的MHET(83 ng/mL),显示出冷适应降解能力。因此,我们首次展示了北极菌株假单胞菌属PAMC26590具有在低温下降解MHET的能力。此外,重组MHET水解酶在pH 8.0和25℃时表现出79%的生物降解活性。分子对接显示由催化残基Ser199、His457和Asp416介导的强结合亲和力(ΔG = -6.67 kcal/mol),稳定的范德华相互作用支持了这一点,这表明了一种生物学上合理的结合模式。分子动力学(MD)模拟和MM-GBSA计算证实了结构稳定性和能量上有利的结合(ΔGbind = -65.42 kcal/mol),加强了配体在MHET水解酶催化机制中的潜在作用。