Suppr超能文献

增强阿尔茨海默病中的适配体筛选:整合结构预测与分子动力学模拟

Enhancing aptamer selection in alzheimer's disease: integrating structure prediction and molecular dynamics simulations.

作者信息

Lohnes Benedikt Jakob, Goff Aaron John, Hartwig Udo Frank, Poddar Nitesh Kumar

机构信息

Department of Biosciences, Manipal University Jaipur, Village-Dehmi Kalan, Ajmer Expressway, Jaipur, 303007, Rajasthan, India.

Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.

出版信息

Sci Rep. 2025 Jul 24;15(1):26865. doi: 10.1038/s41598-025-12186-1.

Abstract

Alzheimer's disease is the most frequent neurodegenerative disease and the leading cause of dementia worldwide. With disease-modifying treatments highly requested, numerous aptamers have been experimentally selected, showing high affinity and specificity binding to the main drivers in the pathology. Still, more studies are needed to compare the biochemical properties and target interactions to streamline the generation of high-efficacy therapeutics. With recent improvements in bioinformatics, we predicted the 2D and 3D structures of known aptamers based on literature-derived sequences, followed by molecular dynamics, molecular docking, and MM/PBSA binding affinity simulations of the aptamer-target complexes. We observed a strong correlation between experimental affinity values and predicted binding free energies, demonstrating the value of implementing computational strategies to streamline the selection process. We identified DNA aptamers as most promising due to their high predictability compared to RNA aptamers and the low docking scores of peptide aptamers. Furthermore, we identified hydrophobic and basic amino acids most frequently contributing to the interaction, with the basic amino acids, arginine, histidine, and lysine accounting for most interactions in all groups. This suggests that forming hydrophobic pockets and ionic interactions mediates aptamer binding, allowing a more directed targeting of Alzheimer's disease and providing the basis for future modifications.

摘要

阿尔茨海默病是全球最常见的神经退行性疾病,也是痴呆症的主要病因。由于对疾病修饰疗法的需求很高,人们通过实验筛选出了许多适体,这些适体对病理学中的主要驱动因素表现出高亲和力和特异性结合。然而,仍需要更多研究来比较生化特性和靶点相互作用,以优化高效治疗药物的研发。随着生物信息学的最新进展,我们基于文献来源的序列预测了已知适体的二维和三维结构,随后对适体-靶点复合物进行了分子动力学、分子对接和MM/PBSA结合亲和力模拟。我们观察到实验亲和力值与预测结合自由能之间存在很强的相关性,这证明了实施计算策略以优化筛选过程的价值。我们发现DNA适体最具前景,因为与RNA适体相比,它们具有更高的可预测性,且肽适体的对接分数较低。此外,我们确定疏水和碱性氨基酸对相互作用的贡献最为频繁,其中碱性氨基酸精氨酸、组氨酸和赖氨酸在所有组中占大多数相互作用。这表明形成疏水口袋和离子相互作用介导了适体结合,从而能够更有针对性地靶向阿尔茨海默病,并为未来的修饰提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/12287316/535bc897358d/41598_2025_12186_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验